Phys Rev E Stat Nonlin Soft Matter Phys
August 2013
The pressure loads on two identical spherical bubbles impulsively introduced in an inviscid simple shear flow are calculated. The interaction force due to these pressure loads is employed to model the dynamics of air bubbles injected to a low-viscosity fluid sheared in a Couette device at the first shear flow instability where the bubbles are trapped inside the stable Taylor vortex. It was shown that the interaction between the bubbles in the primary shear flow drives them away from each other.
View Article and Find Full Text PDFThe inertia-induced forces on two identical spherical bubbles in a simple shear flow at small but finite Reynolds number, for the case when the bubbles are within each other's inner viscous region, are calculated making use of the reciprocal theorem. This interaction force is further employed to model the dynamics of air bubbles injected to a viscous fluid sheared in a Couette device at the first shear flow instability where the bubbles are trapped inside the stable Taylor vortex. It was shown that, during a long time scale, the inertial interaction between the bubbles in the primary shear flow drives them away from each other and, as a result, equal-size bubbles eventually assume an ordered string with equal separation distances between all neighbors.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2012
We report experimental evidence of an effect opposite to the "solidification" of small bubbles in liquid where the surface can become immobile. Namely, it is demonstrated that smooth solid spheres falling in a yield-stress fluid under the action of gravity can behave similar to drops. Particle tracking velocimetry was used to determine the shape of the yielded region around solid spherical particles undergoing slow stationary motion in 0.
View Article and Find Full Text PDF