The collisional cooling of the internal rotational states of the nonlinear anion NH2- (1A1), occurring at the low temperature of a cold ion trap under helium buffer gas cooling, is examined via quantum dynamics calculations and ion decay rate measurements. The calculations employ a novel ab initio potential energy surface that describes the interaction anisotropy and range of action between the molecular anions and the neutral He atoms. The state changing integral cross sections are employed to obtain the state-to-state rate coefficients, separately for the ortho- and the para-NH2- ions.
View Article and Find Full Text PDFWe have studied photodetachment of the amidogen anion as a function of photon energy near the detachment threshold. The detachment spectrum is obtained over the energy range of 6190-6355 cm from the loss rate of the anions from a cryogenic radiofrequency multipole ion trap. By modeling all accessible rotational state-to-state photodetachment transitions, we can assign rotational state-specific thresholds to the measured spectrum.
View Article and Find Full Text PDFRotational transitions of the nonlinear triatomic molecular anion NH_{2}^{-} have been observed by terahertz spectroscopy in a cryogenic radio frequency ion trap. Absorption of terahertz photons has been probed by rotational state-dependent photodetachment of the trapped negative ions near the detachment threshold. Using this two-photon scheme, the two lowest rotational transitions for the asymmetric top rotor NH_{2}^{-} have been found.
View Article and Find Full Text PDFIn the interstellar medium (ISM) ion–molecule reactions play a key role in forming complex molecules. Since 2006, after the radioastronomical discovery of the first of by now six interstellar anions, interest has grown in understanding the formation and destruction pathways of negative ions in the ISM. Experiments have focused on reactions and photodetachment of the identified negatively charged ions.
View Article and Find Full Text PDF