Animals typically respond to their reflection as a conspecific and will respond as if the reflection were another animal that they could interact with, either fearfully or aggressively. We investigated how a modified reflective environment of a standard glass aquarium affects the aggressive and fearful behaviors of the crayfish , based on pre-determined behavior criteria. We found that the crayfish were both increasingly aggressive and slightly fearful in the reflective environment compared to minimal behavioral changes in the control non-reflective environment.
View Article and Find Full Text PDFSurfactant, highly enriched with phosphatidylcholine (PC), is secreted into the airspace by a classic apical secretory route, thereby maintaining lung stability. Herein, we show that adenoviral infection decreases surfactant PC in lungs by inhibiting its apical secretion and redirecting its export in alveolar cells by a basolateral route. These effects were not observed with replication-deficient adenovirus (Ad), specifically lacking early region 1 (E1) gene products.
View Article and Find Full Text PDFBacterial infection triggers an acute inflammatory response that might alter phospholipid metabolism. We have investigated the acute-phase response of murine lung epithelia to Pseudomonas aeruginosa infection. Ps.
View Article and Find Full Text PDFPseudomonas aeruginosa causes sepsis-induced acute lung injury, a disorder associated with deficiency of surfactant phosphatidylcholine (PtdCho). P. aeruginosa (PA103) utilizes a type III secretion system (TTSS) to induce programmed cell death.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2005
We examined the effect of wild-type human adenovirus (Ad5) on choline transport in murine lung epithelia (MLE) and in rodent primary alveolar type II cells. Cells were active in pH-sensitive, reversible transport of choline, a process blocked pharmacologically with phenoxybenzamine, an inhibitor of organic cation transporters (OCT). PCR products for the choline transporters, OCT-1 and OCT-2, were detected, but only OCT-2 protein was robustly expressed within MLE and primary alveolar epithelial cells.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
June 2004
Surfactant protein A (SP-A), the most abundant pulmonary surfactant protein, plays a role in innate host defense and blocks the inhibitory effects of serum proteins on surfactant surface tension-lowering properties. SP-A mRNA and protein are downregulated by phorbol esters (TPA) via inhibition of gene transcription. We evaluated the TPA signaling pathways involved in SP-A inhibition in a lung cell line, H441 cells.
View Article and Find Full Text PDFBackground: It has been proposed that high insulin levels may cause delayed lung development in the fetuses of diabetic mothers. A key event in lung development is the production of adequate amounts of pulmonary surfactant. Insulin inhibits the expression of surfactant protein A (SP-A), the major surfactant-associated protein, in lung epithelial cells.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
August 2002
Surfactant protein A (SP-A), the major lung surfactant-associated protein, mediates local defense against pathogens and modulates inflammation in the alveolus. Tumor necrosis factor (TNF)-alpha, a proinflammatory cytokine, inhibits SP-A gene expression in lung epithelial cells. Inhibitors of the phosphatidylinositol 3-kinase pathway, i.
View Article and Find Full Text PDF