Publications by authors named "Olga Ksionda"

Stimulation of naive T lymphocytes via the T cell receptor (TCR) induces distinct phosphorylation patterns that can be used to explore various signaling pathways within the cell. This protocol can be used to characterize different perturbations to the signaling pathways and the variations in time of stimulation. Here, we provide a method of barcoding and consolidating a maximum of 24 different sample conditions using two florescent dyes.

View Article and Find Full Text PDF
Article Synopsis
  • Mutations in RAS genes like KRAS and NRAS can keep Ras active, leading to blood disorders such as T-cell leukemia (T-ALL) when these changes happen in the bone marrow.* -
  • In T-ALL patients, a protein called RASGRP1 is often found in high amounts, and more of this protein helps T-ALL cells grow faster and outcompete normal cells in the blood.* -
  • Although RASGRP1 overexpression doesn’t directly cause leukemia by itself, it can work with other gene problems to contribute to T-ALL development.*
View Article and Find Full Text PDF

Deregulated signal transduction is a cancer hallmark, and its complexity and interconnectivity imply that combination therapy should be considered, but large data volumes that cover the complexity are required in user-friendly ways. Here, we present a searchable database resource of synthetic lethality with a PI3 kinase signal transduction inhibitor by performing a saturation screen with an ultra-complex shRNA library containing 30 independent shRNAs per gene target. We focus on Ras-PI3 kinase signaling with T cell leukemia as a screening platform for multiple clinical and experimental reasons.

View Article and Find Full Text PDF

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic cancer. Poly-chemotherapy with cytotoxic and genotoxic drugs causes substantial toxicity and more specific therapies targeting the underlying molecular lesions are highly desired. Perturbed Ras signaling is prevalent in T-ALL and occurs via oncogenic RAS mutations or through overexpression of the Ras activator RasGRP1 in ~65% of T-ALL patients.

View Article and Find Full Text PDF
Article Synopsis
  • RasGAPs, which inhibit the Ras signaling pathway, play a role in regulating T cell responses, but their specific functions are not fully understood.
  • This study focused on the effects of two RasGAPs, RASA1 and NF1, by examining mice that lacked both proteins specifically in T cells.
  • The research found that these double-deficient mice developed T cell leukemia due to early developmental issues linked to mutations in the Notch1 gene, indicating that RASA1 and NF1 act as tumor suppressors in T cells.
View Article and Find Full Text PDF

RasGRP proteins are activators of Ras and other related small GTPases by the virtue of functioning as guanine nucleotide exchange factors (GEFs). In vertebrates, four RasGRP family members have been described. RasGRP-1 through -4 share many structural domains but there are also subtle differences between each of the different family members.

View Article and Find Full Text PDF

Macrophages are centrally involved in the pathogenesis of acute inflammatory diseases, peritonitis, endotoxemia, and septic shock. However, the molecular mechanisms controlling such macrophage activation are incompletely understood. In this article, we provide evidence that Vav1, a member of the RhoGEF family, plays a crucial role in macrophage activation and septic endotoxemia.

View Article and Find Full Text PDF

Enhanced signaling by the small guanosine triphosphatase Ras is common in T cell acute lymphoblastic leukemia/lymphoma (T-ALL), but the underlying mechanisms are unclear. We identified the guanine nucleotide exchange factor RasGRP1 (Rasgrp1 in mice) as a Ras activator that contributes to leukemogenesis. We found increased RasGRP1 expression in many pediatric T-ALL patients, which is not observed in rare early T cell precursor T-ALL patients with KRAS and NRAS mutations, such as K-Ras(G12D).

View Article and Find Full Text PDF

The antigen-specific binding of T cells to antigen presenting cells results in recruitment of signalling proteins to microclusters at the cell-cell interface known as the immunological synapse (IS). The Vav1 guanine nucleotide exchange factor plays a critical role in T cell antigen receptor (TCR) signalling, leading to the activation of multiple pathways. We now show that it is recruited to microclusters and to the IS in primary CD4(+) and CD8(+) T cells.

View Article and Find Full Text PDF

During T cell activation by antigen-presenting cells (APCs), the diverse spatiotemporal organization of components of T cell signaling pathways modulates the efficiency of activation. Here, we found that loss of the tyrosine kinase interleukin-2 (IL-2)-inducible T cell kinase (Itk) in mice altered the spatiotemporal distributions of 14 of 16 sensors of T cell signaling molecules in the region of the interface between the T cell and the APC, which reduced the segregation of signaling intermediates into distinct spatiotemporal patterns. Activation of the Rho family guanosine triphosphatase Cdc42 at the center of the cell-cell interface was impaired, although the total cellular amount of active Cdc42 remained intact.

View Article and Find Full Text PDF

The guanine nucleotide exchange factor (GEF) Vav1 is essential for transducing T cell antigen receptor (TCR) signals and therefore plays a critical role in the development and activation of T cells. It has been presumed that the GEF activity of Vav1 is important for its function; however, there has been no direct demonstration of this. Here, we generated mice expressing enzymatically inactive, but normally folded, Vav1 protein.

View Article and Find Full Text PDF