Biofilms based on bacteria () and () and yeast () were used for novel biosensor creation for rapid biochemical oxygen demand (BOD) monitoring. Based on the electrochemical measurement results, it was shown that the endogenous mediator in the matrix of and biofilms and ferrocene form a two-mediator system that improves electron transport in the system. Biofilms based on and had a high biotechnological potential for BOD assessment; bioreceptors based on such biofilms had high sensitivity (the lower limits of detectable BOD concentrations were 0.
View Article and Find Full Text PDFThis study presents a novel ″3-in-1″ hybrid biocatalyst design that combines the individual efficiency of microorganisms while avoiding negative interactions between them. Yeast cells of VKM Y-2559, VKM Y-2677, and VKM Y-2482 were immobilized in an organosilicon material by using the sol-gel method, resulting in a hybrid biocatalyst. The catalytic activity of the immobilized microorganism mixture was evaluated by employing it as the bioreceptor element of a biosensor.
View Article and Find Full Text PDFDuring previous stages of research, high biocidal activity toward microorganism archival strains has been used as the main indicator in the development of new antiseptic formulations. Although this factor remains one of the most important characteristics of biocide efficiency, the scale of antimicrobial resistance spread causes serious concern. Therefore, focus shifts toward the development of formulations with a stable effect even in the case of prolonged contact with pathogens.
View Article and Find Full Text PDFIn a previous development stage, mostly individual antibacterial activity was a target in the optimization of biologically active compounds and antiseptic agents. Although this targeting is still valuable, a new trend has appeared since the discovery of superhigh resistance of bacterial cells upon their aggregation into groups. Indeed, it is now well established that the great majority of pathogenic germs are found in the environment as surface-associated microbial communities called biofilms.
View Article and Find Full Text PDFBiomembranes based on an organosilica sol-gel matrix were used to immobilize bacteria VKM B-3302 as part of a biochemical oxygen demand (BOD) biosensor. Diethoxydimethylsilane (DEDMS) and tetraethoxysilane (TEOS) were used as precursors to create the matrix in a 1:1 volume ratio. The use of scanning electron microscopy (SEM) and the low-temperature nitrogen adsorption method (BET) showed that the sol-gel matrix forms a capsule around microorganisms that does not prevent the exchange of substrates and waste products of bacteria to the cells.
View Article and Find Full Text PDFOne of the main indices of the quality of water is the biochemical oxygen demand (BOD). A little over 40 years have passed since the practical application of the first microbial sensor for the determination of BOD, presented by the Japanese professor Isao Karube. This time span has brought new knowledge to and practical developments in the use of a wide range of microbial cells based on BOD biosensors.
View Article and Find Full Text PDFIn the last decade, there has been continuous competition between two methods for detecting the concentration of dissolved oxygen: amerometric (Clark electrode) and optical (quenching of the phosphorescence of the porphyrin metal complex). Each of them has obvious advantages and disadvantages. This competition is especially acute in the development of biosensors, however, an unbiased comparison is extremely difficult to achieve, since only a single detection method is used in each particular study.
View Article and Find Full Text PDFThe possibility of the developing a biochemical oxygen demand (BOD) biosensor based on electroactive biofilms of activated sludge grown on the surface of a graphite-paste electrode modified with carbon nanotubes was studied. A complex of microscopic methods controlled biofilm formation: optical microscopy with phase contrast, scanning electron microscopy, and laser confocal microscopy. The features of charge transfer in the obtained electroactive biofilms were studied using the methods of cyclic voltammetry and electrochemical impedance spectroscopy.
View Article and Find Full Text PDFElectropolymerized neutral red, thionine, and aniline were used as part of hybrid nanocomposite conductive polymers, to create an amperometric reagent-less biosensor for glucose determination. The structure of the obtained polymers was studied using infrared (IR) spectroscopy and scanning electron microscopy. Electrochemical characteristics were studied by cyclic voltammetry and impedance spectroscopy.
View Article and Find Full Text PDFMicroorganism-cell-based biohybrid materials have attracted considerable attention over the last several decades. They are applied in a broad spectrum of areas, such as nanotechnologies, environmental biotechnology, biomedicine, synthetic chemistry, and bioelectronics. Sol-gel technology allows us to obtain a wide range of high-purity materials from nanopowders to thin-film coatings with high efficiency and low cost, which makes it one of the preferred techniques for creating organic-inorganic matrices for biocomponent immobilization.
View Article and Find Full Text PDFThe impact of hydrophilic polymers in an organosilica matrix on the features and performance of immobilized methylotrophic yeast cells used as biocatalysts was investigated and described. Yeast cells were immobilized in a matrix made of tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) by one-step sol-gel route of synthesis in the presence of polyethylene glycol (PEG) or polyvinyl alcohol (PVA). Organosilica shells were spontaneously built around cells as a result of yeast immobilization at a TEOS to MTES ratio of 85/15 vol% and hydrophilic polymer (PEG or PVA).
View Article and Find Full Text PDFWe have studied immobilization of VKM B-3302 cells in an organosilica sol-gel matrix consisting of tetraethoxysilane, methyltriethoxysilane and polyvinyl alcohol as a structure-modifying agent. Optical microscopy showed that higher amounts of methyltriethoxysilane make the solid material structure softer. In addition, formation of structures, probably, with bacterial cells inside was spotted.
View Article and Find Full Text PDFThis research suggests the use of new hybrid biomaterials based on methylotrophic yeast cells covered by an alkyl-modified silica shell as biocatalysts. The hybrid biomaterials are produced by sol-gel chemistry from silane precursors. The shell protects microbial cells from harmful effects of acidic environment.
View Article and Find Full Text PDF