Publications by authors named "Olga I Stenina"

Thrombospondin-4 (TSP-4) expression increases dramatically in hypertrophic and failing hearts in rodent models and in humans. The aim of this study was to address the function of TSP-4 in the heart. TSP-4-knockout (Thbs4(-/-)) and wild-type (WT) mice were subjected to transverse aortic constriction (TAC) to increase left ventricle load.

View Article and Find Full Text PDF

Objective: Vascular diabetic complications are associated with abnormal extracellular matrix and dysfunction of vascular cells, which later result in aberrant angiogenesis and development of atherosclerotic lesions. The tissue and cell specificity of the effects of high glucose are well recognized, but the underlying cell type-specific molecular mechanisms controlled by glucose are still unclear. We sought to identify cell type-specific mechanisms by which high glucose regulates transcription of genes in vascular cells.

View Article and Find Full Text PDF

Rationale: Thrombospondin (TSP)-4 is an extracellular protein that has been linked to several cardiovascular pathologies. However, a role for TSP-4 in vascular wall biology remains unknown.

Objective: We have examined the effects of TSP-4 gene (Thbs4) knockout on the development of atherosclerotic lesions in ApoE(-/-) mice.

View Article and Find Full Text PDF
Article Synopsis
  • Hyperglycemia is a key factor that increases the risk for diabetic vascular complications, but the specific molecular processes are not fully understood.
  • Aryl hydrocarbon receptor (AhR) was found to have a binding site related to thrombospondin-1, which is linked to harmful vascular effects, and was activated by high glucose in aortic endothelial cells.
  • The research reveals that AhR interacts with other transcription factors in response to high glucose and is influenced by the hexosamine pathway, marking a novel connection between AhR activation and the negative impacts of hyperglycemia on blood vessels.
View Article and Find Full Text PDF

Hyperglycemia is an independent risk factor for development of vascular diabetic complications. Vascular dysfunction in diabetics manifests in a tissue-specific manner; macrovasculature is affected by atherosclerotic lesions, and microvascular complications are described as "aberrant angiogenesis": in the same patient angiogenesis is increased in some tissues (e.g.

View Article and Find Full Text PDF

The thrombospondins are a 5-member gene family that mediate cell-cell and cell-matrix interactions. The thrombospondins are either trimers or pentamers, and their functions depend on their abilities to interact with numerous extracellular ligands and cell surface receptors through the multiple domains that compose each subunit. Recent genetic studies have indicated associations of particular single nucleotide polymorphisms in 3 of the 5 thrombospondins with cardiovascular disease.

View Article and Find Full Text PDF

Accelerated development of atherosclerotic lesions remains the most frequent and dangerous complication of diabetes, accounting for 80% of deaths among diabetics. However, our understanding of the pathways mediating glucose-induced gene expression in vascular cells remains controversial and incomplete. We have identified an intracellular metabolic pathway activated by high glucose in human aortic smooth muscle cells that mediates up-regulation of thrombospondin-1 (TSP-1).

View Article and Find Full Text PDF

Recent genetic studies have associated members of the thrombospondin (TSP) gene family with premature cardiovascular disease. The disease-associated polymorphisms lead to single amino acid changes in TSP-4 (A387P) and TSP-1 (N700S). These substitutions reside in adjacent domains of these highly homologous proteins.

View Article and Find Full Text PDF

High-throughput genomic technology identified an association between a single nucleotide polymorphism (SNP), a proline (P387) rather than the predominant alanine (A387) at position 387 in thrombospondin-4 (TSP-4) and premature myocardial infarction. The inflammatory hypothesis of atherosclerosis invokes a prominent role of leukocytes and cytokines in pathogenesis. As the expression of TSP-4 by vascular cells permits its exposure to circulating leukocytes, the interactions of human neutrophils (polymorphonuclear leukocytes [PMNs]) with both TSP-4 variants were investigated.

View Article and Find Full Text PDF

GeneQuest was a high throughput, large-scale analysis of single nucleotide polymorphisms (SNPs) to identify gene associated with familial, premature coronary artery disease and myocardial infarction. The three SNPs showing the highest and most significant associations with disease were all members of the thrombospondin gene family, thrombospondin-1, thrombospondin-2 and thrombospondin-4. These unanticipated associations have kindled efforts to understand how the three SNPs influence the structures and functions of the thrombospondins.

View Article and Find Full Text PDF

Background: In a recent large-scale genetic association study, a single nucleotide polymorphism in the thrombospondin-4 (TSP-4) gene, resulting in a proline-for-alanine substitution at position 387, was associated with a significantly increased risk for premature atherosclerosis. TSP-4 had not previously been implicated in vascular pathology, and very little information is available on its expression and functions.

Methods And Results: The goal of this study was to assess TSP-4 expression in vessel wall and to identify differences in functions of TSP-4 variants that could account for the proatherogenic effects of the (P387)TSP-4 variant.

View Article and Find Full Text PDF

Background: Thrombospondin-1 (TSP-1) expression in the vascular wall has been related to the development of atherosclerotic lesions and restenosis. TSP-1 promotes the development of neointima and has recently been associated with atherogenesis at a genetic level. Because TSP-1 expression is responsive to glucose stimulation in mesangial cells, we hypothesized that glucose may stimulate its production by vascular cells.

View Article and Find Full Text PDF

Receptors of vascular cells and coagulation proteins form a tightly integrated and balanced system, providing regulation to coagulation and mediating a response to coagulation by the vascular cells. Endothelial and smooth muscle cells express a variety of proteins directly participating in hemostasis. Engagement of activated coagulation proteins by their specific receptors on the vascular cell surface, in turn, activates these cells and leads to expression of genes involved in coagulation, angiogenesis, leukocyte adhesion, regulation of the vascular wall tone, etc.

View Article and Find Full Text PDF