Publications by authors named "Olga Draper"

Magnetotactic bacteria possess cellular compartments called magnetosomes that sense magnetic fields. Alignment of magnetosomes in the bacterial cell is necessary for their function, and this is achieved through anchoring of magnetosomes to filaments composed of the protein MamK. MamK is an actin homolog that polymerizes upon ATP binding.

View Article and Find Full Text PDF

Bacterial actins, in contrast to their eukaryotic counterparts, are highly divergent proteins whose wide-ranging functions are thought to correlate with their evolutionary diversity. One clade, represented by the MamK protein of magnetotactic bacteria, is required for the subcellular organization of magnetosomes, membrane-bound organelles that aid in navigation along the earth's magnetic field. Using a fluorescence recovery after photobleaching assay in Magnetospirillum magneticum AMB-1, we find that, like traditional actins, MamK forms dynamic filaments that require an intact NTPase motif for their turnover in vivo.

View Article and Find Full Text PDF

Gram-negative type IV secretion systems (T4SSs) transfer proteins and DNA to eukaryotic and/or prokaryotic recipients resulting in pathogenesis or conjugative DNA transfer. VirB4, one of the most conserved proteins in these systems, has both energetic and structural roles in substrate translocation. We previously predicted a structural model for the large C-terminal domain (residues 425-789) of VirB4 of Agrobacterium tumefaciens.

View Article and Find Full Text PDF

Conjugative relaxases are the proteins that initiate bacterial conjugation by a site-specific cleavage of the transferred DNA strand. In vitro, they show strand-transferase activity on single-stranded DNA, which suggests they may also be responsible for recircularization of the transferred DNA. In this work, we show that TrwC, the relaxase of plasmid R388, is fully functional in the recipient cell, as shown by complementation of an R388 trwC mutant in the recipient.

View Article and Find Full Text PDF

Numerous bacterial pathogens use type IV secretion systems (T4SS) to deliver virulence factors directly to the cytoplasm of plant, animal, and human host cells. Here, evidence for interactions among components of the Agrobacterium tumefaciens vir-encoded T4SS is presented. The results derive from a high-resolution yeast two-hybrid assay, in which a library of small peptide domains of T4SS components was screened for interactions.

View Article and Find Full Text PDF