Publications by authors named "Olga Deryabina"

Background: The possible involvement of p53 signaling, FGFR3 expression, and mutation rates in the prediction of the NMIBC anti-PD-L1 treatment response needs to be clarified. The main aim of our study was to explore predictive value of p53 expression, FGFR3 expression, and its gene mutation status for the therapeutic success of anti-PD-L1 treatment in the patient-derived murine model of recurrent high-PD-L1(+) GATA3(-)/CR5/6(-) high-grade and low-grade NMIBC.

Methods: twenty lines of patient-derived xenografts (PDXs) of relapsed high-PD-L1(+) double-negative NMIBC were developed, of which 10 lines represented high-grade tumors and the other ones-low-grade bladder cancer.

View Article and Find Full Text PDF

Background: The main goal of our study was to explore the wound-healing property of a novel cerium-containing N-acethyl-6-aminohexanoate acid compound and determine key molecular targets of the compound mode of action in diabetic animals.

Methods: Cerium N-acetyl-6-aminohexanoate (laboratory name LHT-8-17) as a 10 mg/mL aquatic spray was used as wound experimental topical therapy. LHT-8-17 toxicity was assessed in human skin epidermal cell culture using (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.

View Article and Find Full Text PDF

Background: bladder cancer is one of the most common urinary tract malignancies. Establishment of robust predictors of disease progression and outcome is important for personalizing treatment of non-muscular invasive bladder carcinoma (NMIBC). In this study we evaluated association of PD-L1 expression with other prognostic biomarkers, such as expression of miRNA-145 and miRNA-200a, gene expression, and mutation status in tissue specimens of the luminal subtype of newly diagnosed high and low grade NMIBC.

View Article and Find Full Text PDF

The goal of this study was to assess how PD-L1 expression in tissue specimens of patients with main molecular subtypes of NMIBC (luminal, basal and double-negative p53-mutant) associates with relapsed-free survival in dependence on the tumor grade and prior treatment of primary bladder cancer. PD-L1 expressions on the membrane of neoplastic and CD8+ immune cells were assessed in tumor specimens ( = 240) of primary and relapsed luminal, basal and double-negative p53-mutant NMIBC. Association between relapse-free survival and PD-L1 expression was estimated for high- and low-grade relapsed NMIBC according to previous treatment and their molecular profile, using the Kaplan-Meier method, and assessed by using the log-rank test.

View Article and Find Full Text PDF

Context: Exploration of the biological property of programmed death-ligand 1 (PD-L1) signaling that may impact bladder tumor growth in humanized animals and cell culture.

Aims: The aim of this study is to evaluate how PD-L1 signaling involves bladder cancer growth and progression.

Settings And Design: This study design involves experimental and study.

View Article and Find Full Text PDF

Background: Establishment of heterotopic patient-derived xenografts of primary and relapsed non-muscular invasive bladder cancer (NMIBC) to explore the biological property of PD-L1 signaling that may impact bladder tumor growth in humanized animals.

Methods: Tumor cells of luminal, basal, and p53 subtypes of primary and relapsed NMIBC were engrafted to irradiated (3.5 Gy) NOG/SCID female mice along with intraperitoneal transplantation of human lymphocytes (5 × 10 cells/mouse); a role of PD-L1 signaling pathway inhibition for bladder cancer growth was assessed in humanized animals that carried PD-L1-expressing main molecular subtypes of bladder carcinoma patient-derived xenografts (PDX) and provided with selective anti-PD-L1 treatment.

View Article and Find Full Text PDF

The activity of betulin-3,28-diphosphate (BDP) in combination with the cytostatics such as 5-fluorouracil (5-FU) and hydrazine sulfate (HS) was demonstrated by using the transplanted Ehrlich ascites carcinoma (EAC) in mice. The dose-dependent effect of combination drugs BDP + HS and BDP + 5-FU was revealed by in vitro experiments on rats. The synergetic effect of HS and BDP on oxidative stress and energy metabolism was established.

View Article and Find Full Text PDF