LiNbO is a distinguished multifunctional material where ferroelectric domain engineering is of paramount importance. This degree of freedom of the spontaneous polarization remarkably enhances the applicability of LiNbO, for instance, in photonics. In this work, we report the first method for all-optical domain inversion of LiNbO crystals using continuous-wave visible light.
View Article and Find Full Text PDFThe 1D nanowire arrays and 3D nanowire networks of topological insulators and metals have been fabricated by template-assisted deposition of BiTe and Ni inside anodic aluminum oxide (AAO) templates, respectively. Despite the different origins of the plasmon capabilities of the two materials, the results indicate that the optical response is determined by plasmon resonances, whose position depends on the nanowire interactions and material properties. Due to the thermoelectric properties of BiTe nanowires, these plasmon resonances could be used to develop new ways of enhancing thermal gradients and their associated thermoelectric power.
View Article and Find Full Text PDFRecently, polymers have been attracted great attention because of their thermoelectric materials' excellent mechanical properties, specifically their cost-effectiveness and scalability at the industrial level. In this study, the electropolymerization conditions (applied potential and deposition time) of PEDOT films were investigated to improve their thermoelectric properties. The morphology and Raman spectroscopy of the PEDOT films were analyzed according to their applied potential and deposition time.
View Article and Find Full Text PDF3D interconnected nanowire scaffoldings are shown to increase the thermoelectric efficiency in comparison to similar diameter 1D nanowires and films grown under similar electrodeposition conditions. BiTe 3D nanonetworks offer a reduction in thermal conductivity (κ) while preserving the high electrical conductivity of the films. The reduction in κ is modeled using the hydrodynamic heat transport equation, and it can be understood as a heat viscosity effect due to the 3D nanostructuration.
View Article and Find Full Text PDFThe use of metallic nanostructures in the fabrication of bioelectrodes (, neural implants) is gaining attention nowadays. Nanostructures provide increased surface area that might benefit the performance of bioelectrodes. However, there is a need for comprehensive studies that assess electrochemical performance of nanostructured surfaces in physiological and relevant working conditions.
View Article and Find Full Text PDFAnodic porous alumina, -AAO- (also known as nanoporous alumina, nanohole alumina arrays, -NAA- or nanoporous anodized alumina platforms, -NAAP-) has opened new opportunities in a wide range of fields, and is used as an advanced photonic structure for applications in structural coloration and advanced optical biosensing based on the ordered nanoporous structure obtained and as a template to grow nanowires or nanotubes of different materials giving rise to metamaterials with tailored properties. Therefore, understanding the structure of nanoporous anodic alumina templates and knowing how they are fabricated provide a tool for the further design of structures based on them, such as 3D nanoporous structures developed recently. In this work, we review the latest developments related to nanoporous alumina, which is currently a very active field, to provide a solid and thorough reference for all interested experts, both in academia and industry, on these nanostructured and highly useful structures.
View Article and Find Full Text PDFSelf-standing Bi₂Te₃ networks of interconnected nanowires were fabricated in three-dimensional porous anodic alumina templates (3D⁻AAO) with a porous structure spreading in all three spatial dimensions. Pulsed electrodeposition parameters were optimized to grow highly oriented Bi₂Te₃ interconnected nanowires with stoichiometric composition inside those 3D⁻AAO templates. The nanowire networks were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and Raman spectroscopy.
View Article and Find Full Text PDFThree-dimensional anodic alumina templates (3D-AAO) are an astonishing framework with open highly ordered three-dimensional skeleton structures. Since these templates are architecturally different from conventional solids or porous templates, they teem with opportunities for engineering thermal properties. By establishing the mechanisms of heat transfer in these frameworks, we aim to create materials with tailored thermal properties.
View Article and Find Full Text PDFThree-dimensional (3D) nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties or make a device. However, the amount of compounds with the ability to self-organize in ordered 3D nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards 3D nanostructures.
View Article and Find Full Text PDFPhysical properties at the nanoscale are novel and different from those in bulk materials. Over the last few decades, there has been an ever growing interest in the fabrication of nanowire structures for a wide variety of applications including energy generation purposes. Nevertheless, the study of their transport properties, such as thermal conductivity, electrical conductivity or Seebeck coefficient, remains an experimental challenge.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2013
Ordered anodic aluminum oxide (AAO) templates with pores <15 nm in diameter and an aspect ratio (length-to-diameter ratio) above 3 × 10(3) have been fabricated using a nonlithographic approach; specifically, by anodizing aluminum in an ethylene-glycol-containing sulfuric acid electrolyte. The pores are the smallest in diameter reported for a self-ordered AAO without pore aspect-ratio limitations and good ordering, which opens up the possibility of obtaining nanowire arrays in the quantum confinement regime that is of interest for efficient thermoelectric generators. The effect of the ethylene glycol addition on both the pore diameter and the ordering is evaluated and discussed.
View Article and Find Full Text PDFWe compare the filtering capabilities of two infrared fibers developed to achieve a high rejection ratio of the higher order modes in order to obtain compact modal filters devoted to stellar interferometry. Two types of double-clad fibers are studied: a fiber with a second thin absorbing cladding and a fiber with a second thick absorbing cladding closer to the fiber core; both are single mode around the CO(2) band (10.6 μm).
View Article and Find Full Text PDFHeavy mass ions, Kr and Xe, having energies in the approximately 10 MeV/amu range have been used to produce thick planar optical waveguides at the surface of lithium niobate (LiNbO3). The waveguides have a thickness of 40-50 micrometers, depending on ion energy and fluence, smooth profiles and refractive index jumps up to 0.04 (lambda = 633 nm).
View Article and Find Full Text PDF