Publications by authors named "Olga Buneeva"

Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), also known as Parkinson's disease protein 5, is a highly expressed protein in the brain. It plays an important role in the ubiquitin-proteasome system (UPS), where it acts as a deubiquitinase (DUB) enzyme. Being the smallest member of the UCH family of DUBs, it catalyzes the reaction of ubiquitin precursor processing and the cleavage of ubiquitinated protein remnants, thus maintaining the level of ubiquitin monomers in the brain cells.

View Article and Find Full Text PDF

Affinity-based proteomic profiling is widely used for the identification of proteins involved in the formation of various interactomes. Since protein-protein interactions (PPIs) reflect the role of particular proteins in the cell, identification of interaction partners for a protein of interest can reveal its function. The latter is especially important for the characterization of multifunctional proteins, which can play different roles in the cell.

View Article and Find Full Text PDF

Proteasomes are highly conserved multienzyme complexes responsible for proteolytic degradation of the short-lived, regulatory, misfolded, and damaged proteins. They play an important role in the processes of brain plasticity, and decrease in their function is accompanied by the development of neurodegenerative pathology. Studies performed in different laboratories both on cultured mammalian and human cells and on preparations of the rat and rabbit brain cortex revealed a large number of proteasome-associated proteins.

View Article and Find Full Text PDF

Disulfiram (DSF) and its derivatives were here investigated as antineoplastic agents, and their important feature is the ability to influence the UPS. We have recently shown that hydroxocobalamin catalyzes the aerobic oxidation of diethyldithiocarbamate to form disulfiram and its oxy-derivatives (DSFoxy; i.e.

View Article and Find Full Text PDF

Isatin (indole-2,3-dione) is an endogenous regulator, exhibiting various behavioral, biological, and pharmacological activities. Synthesis of isatin includes several crucial stages: cleavage of the tryptophan side chain and subsequent oxidation of the indole nucleus. Although these stages require concerted action of bacterial and host enzymes, there are two pathways of isatin formation: the host and bacterial pathways.

View Article and Find Full Text PDF

Ubiquitination (the covalent attachment of ubiquitin molecules to target proteins) is one of the main post-translational modifications of proteins. Historically, the type of polyubiquitination, which involves K48 lysine residues of the monomeric ubiquitin, was the first studied type of ubiquitination. It usually targets proteins for their subsequent proteasomal degradation.

View Article and Find Full Text PDF

Fractions of 26S and 20S proteasomes isolated from the rabbit brain by the method of salt fractionation (salt-induced precipitation) contain intrinsic proteasome proteins responsible for assembly of the core particle and regulatory particle of proteasome and also proteasome-binding proteins. These proteasome-binding proteins include components of the ubiquitin-proteasome system, some ubiquitinated proteins, as well as cytoskeleton components, protective proteins, regulators of gene expression, cell division, and differentiation, and multifunctional proteins (mainly, glycolytic enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), aldolase, pyruvate kinase, etc.).

View Article and Find Full Text PDF

DJ-1, also known as Parkinson's disease protein 7, is a multifunctional protein ubiquitously expressed in cells and tissues. Interacting with proteins of various intracellular compartments, DJ-1 plays an important role in maintaining different cellular functions. Mutant DJ-1 forms containing amino acid substitutions (especially L166P), typical of Parkinson's disease, are characterized by impaired dimerization, stability, and folding.

View Article and Find Full Text PDF

Mitochondria, the energy stations of the cell, are the only extranuclear organelles, containing their own (mitochondrial) DNA (mtDNA) and the protein synthesizing machinery. The location of mtDNA in close proximity to the oxidative phosphorylation system of the inner mitochondrial membrane, the main source of reactive oxygen species (ROS), is an important factor responsible for its much higher mutation rate than nuclear DNA. Being more vulnerable to damage than nuclear DNA, mtDNA accumulates mutations, crucial for the development of mitochondrial dysfunction playing a key role in the pathogenesis of various diseases.

View Article and Find Full Text PDF

Isatin (indole-2,3-dione) is an endogenous regulator, exhibiting a wide range of biological and pharmacological activities. At doses of 100 mg/kg and above, isatin is neuroprotective in different experimental models of neurodegeneration. Good evidence exists that its effects are realized via interaction with numerous isatin-binding proteins identified in the brain and peripheral tissues studied.

View Article and Find Full Text PDF

Renalase (RNLS) is a recently discovered protein involved in blood pressure regulation. It exists both as an intracellular catalytically active flavoprotein (EC 1.6.

View Article and Find Full Text PDF

Angiotensin converting enzyme (ACE) is involved in proteolytic processing of the amyloid-β(Aβ) peptide implicated in the development of Alzheimer's disease (AD) and known products of ACE-based processing of Aβ42 are characterized by reduced aggregability and cytotoxicity. Recently it has been demonstrated that ACE can act as an arginine specific endopeptidase cleaving the N-terminal pentapeptide (Aβ1-5) from synthetic Aβ peptide analogues. In the context of proteolytic processing of full length Aβ42, this suggests possible formation of Aβ6-42 species.

View Article and Find Full Text PDF

Mitochondria are a crucial target for the actions of neurotoxins, causing symptoms of Parkinson's disease in various experimental animal models, and also neuroprotectors. There is evidence that mitochondrial dysfunction induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) influences functioning of the ubiquitin-proteasomal system (UPS) responsible for selective proteolytic degradation of proteins from various intracellular compartments (including mitochondria) and neuroprotective effects of certain anti-Parkisonian agents (monoamine oxidase inhibitors) may be associated with their effects on the UPS. In this study, we have investigated the effect of the neurotoxin MPTP and neuroprotector isatin, and their combination on the profile of ubiquitinated brain mitochondrial proteins.

View Article and Find Full Text PDF

Isatin (indole-2,3-dione) is an oxidized indole. It is widely distributed in mammalian tissues and body fluids, where isatin concentrations vary significantly from <0.1 to > 10 µM.

View Article and Find Full Text PDF

Isatin (indol-2,3-dione) is an endogenous non-peptide regulator exhibiting a wide range of biological and pharmacological activities, which are poorly characterized in terms of their molecular mechanisms. Identification of many isatin-binding proteins in the mammalian brain and liver suggests that isatin may influence their functions. We have hypothesized that besides direct action on particular protein targets, isatin can act as a regulator of protein-protein interactions (PPIs).

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by the appearance of motor symptoms many years after the onset of neurodegeneration, which explains low efficiency of therapy. Therefore, one of the priorities in neurology is to develop an early diagnosis and preventive treatment of PD, based on knowledge of molecular mechanisms of neurodegeneration and neuroplasticity in the nigrostriatal system. However, due to inability to diagnose PD at preclinical stage, research and development must be performed in animal models by comparing the nigrostriatal system in the models of asymptomatic and early symptomatic stages of PD.

View Article and Find Full Text PDF

Background/aims: Renalase is a recently discovered flavoprotein involved in regulation of blood pressure. Altered renalase levels have been found in blood of patients with end stage renal disease. The antihypertensive effect of circulating renalase is attributed to putative FAD-dependent monoamine oxidase activity demonstrated by some authors.

View Article and Find Full Text PDF

The amyloid-β peptide(1-42) (Aβ) is a key player in the development and progression of Alzheimer's disease (AD). Although much attention is paid to its role in formation of extracellular amyloid plaques and protein aggregates as well as to corresponding mechanisms of their toxicity, good evidence exists that intracellular Aβ can accumulate intraneuronally and interact with intracellular target proteins. However, intracellular Aβ binding proteins as well as conditions favoring their interactions with Aβ are poorly characterized.

View Article and Find Full Text PDF

Renalase is a recently discovered secretory protein involved in the regulation of blood pressure. Cells synthesize all known isoforms of human renalase (1 and 2) as flavoproteins. Accommodation of FAD in the renalase protein requires the presence of its N-terminal peptide.

View Article and Find Full Text PDF

The amyloid-beta peptide is considered as a key player in the development and progression of Alzheimer's disease (AD). Although good evidence exists that amyloid-beta accumulates inside cells, intracellular brain amyloid-beta-binding proteins remain poorly characterized. Here we describe a protocol for affinity-based profiling of amyloid-beta-binding proteins of rat brain, their proteomic identification and validation by a surface plasmon resonance (SPR)-based analysis.

View Article and Find Full Text PDF

The amyloid-β peptide is considered as a key player in the development and progression of Alzheimer's disease (AD). Although good evidence exists that amyloid-β accumulates inside cells, intracellular brain amyloid-binding proteins remain poorly characterized. Proteomic profiling of rat brain homogenates, performed in this study, resulted in identification of 89 individual intracellular amyloid-binding proteins, and approximately 25% of them were proteins that we had previously identified as specifically binding to isatin, an endogenous neuroprotector molecule.

View Article and Find Full Text PDF

There is increasing evidence that proteins function in the cell as integrated stable or temporally formed protein complexes, interactomes. Previously, using model systems we demonstrated applicability of direct molecular fishing on paramagnetic particles for protein interactomics (Ershov et al. Proteomics, 2012, 12, 3295).

View Article and Find Full Text PDF

Background: Renalase is a recently discovered secretory protein involved in regulation of arterial blood pressure in humans and animals. Results of animal experiments from independent laboratories indicate that administration of human recombinant renalase decreases blood pressure and some genetically predisposed hypertensive rats have lowered renalase levels.

Material And Methods: The levels of renalase mRNA expression in brain hemispheres, heart, and kidneys of spontaneously hypertensive rats (SHR) with moderate (140-180 mm Hg) or high (>180 mm Hg) hypertension and of control Wistar-Kyoto (WKY) rats were analyzed using real-time PCR.

View Article and Find Full Text PDF

Renalase is a recently discovered protein, involved in regulation of blood pressure in humans and animals. Although several splice variants of human renalase mRNA transcripts have been recognized, only one protein product, hRenalase1, has been found so far. In this study, we have used polymerase chain reaction (PCR)-based amplification of individual exons of the renalase gene and their joining for construction of full-length hRenalase2 coding sequence followed by expression of hRenalase2 as a polyHis recombinant protein in Escherichia coli cells.

View Article and Find Full Text PDF