Publications by authors named "Olga Bozovic"

Controlling the activity of proteins with azobenzene photoswitches is a potent tool for manipulating their biological function. With the help of light, it is possible to change binding affinities, control allostery or manipulate complex biological processes, for example. Additionally, owing to their intrinsically fast photoisomerization, azobenzene photoswitches can serve as triggers that initiate out-of-equilibrium processes.

View Article and Find Full Text PDF

The aim of this study was to investigate the creation of humic substances during biodegradation of heavy residual fuel oil, because there are indications that substances similar to humic substances are generated during biodegradation of polycyclic aromatic hydrocarbons. In the study, which lasted for 110 days, biodegradation of heavy residual fuel oil was carried out in a layer of artificial soil substrate. The initial concentration of the total petroleum hydrocarbon in the prepared artificial soil substrate (biopile) was 23.

View Article and Find Full Text PDF

The phototriggered unbinding of the intrinsically disordered S-peptide from the RNase S complex is studied with the help of transient IR spectroscopy, covering a wide range of time scales from 100 ps to 10 ms. To that end, an azobenzene moiety has been linked to the S-peptide in a way that its helicity is disrupted by light, thereby initiating its complete unbinding. The full sequence of events is observed, starting from unfolding of the helical structure of the S-peptide on a 20 ns time scale while still being in the binding pocket of the S-protein, S-peptide unbinding after 300 μs, and the structural response of the S-protein after 3 ms.

View Article and Find Full Text PDF

The dynamics of peptide-protein binding and unbinding of a variant of the RNase S system has been investigated. To initiate the process, a photoswitchable azobenzene moiety has been covalently linked to the S-peptide, thereby switching its binding affinity to the S-protein. Transient fluorescence quenching was measured with the help of a time-resolved fluorometer, which has been specifically designed for these experiments and is based on inexpensive light-emitting diodes and laser diodes only.

View Article and Find Full Text PDF

While much is known about different allosteric regulation mechanisms, the nature of the allosteric signal and the time scale on which it propagates remains elusive. The PDZ3 domain from postsynaptic density-95 protein is a small protein domain with a terminal third α-helix, i.e.

View Article and Find Full Text PDF

Allosteric regulation is an innate control in most metabolic and signalling cascades that enables living organisms to adapt to the changing environment by tuning the affinity and regulating the activity of target proteins. For a microscopic understanding of this process, a protein system has been designed in such a way that allosteric communication between the binding and allosteric site can be observed in both directions. To that end, an azobenzene-derived photoswitch has been linked to the α3-helix of the PDZ3 domain, arguably the smallest allosteric protein with a clearly identifiable binding and allosteric site.

View Article and Find Full Text PDF

While allostery is of paramount importance for protein regulation, the underlying dynamical process of ligand (un)binding at one site, resulting time evolution of the protein structure, and change of the binding affinity at a remote site are not well understood. Here the ligand-induced conformational transition in a widely studied model system of allostery, the PDZ2 domain, is investigated by transient infrared spectroscopy accompanied by molecular dynamics simulations. To this end, an azobenzene-derived photoswitch is linked to a peptide ligand in a way that its binding affinity to the PDZ2 domain changes upon switching, thus initiating an allosteric transition in the PDZ2 domain protein.

View Article and Find Full Text PDF

An azobenzene-derived photoswitch has been covalently cross-linked to two sites of the S-peptide in the RNase S complex in a manner that the α-helical content of the S-peptide reduces upon -to- isomerization of the photoswitch. Three complementary experimental techniques have been employed, isothermal titration calorimetry, circular dichroism spectroscopy and intrinsic tyrosine fluorescence quenching, to determine the binding affinity of the S-peptide to the S-protein in the two states of the photoswitch. Five mutants with the photoswitch attached to different sites of the S-peptide have been explored, with the goal to maximize the change in binding affinity upon photoswitching, and to identify the mechanisms that determine the binding affinity.

View Article and Find Full Text PDF

The noncanonical amino acid azidohomoalanine (Aha) is known to be an environment-sensitive infrared probe for the site-specific investigation of protein structure and dynamics. Here, the capability of that label is explored to detect protein-ligand interactions by incorporating it in the vicinity of the binding groove of a PDZ2 domain. Circular dichroism and isothermal titration calorimetry measurements reveal that the perturbation of the protein system by mutation is negligible, with minimal influence on protein stability and binding affinity.

View Article and Find Full Text PDF

We explore the capability of the non-natural amino acid azidohomoalanine (AHA) as an IR label to sense relatively small structural changes in proteins with the help of 2D IR difference spectroscopy. To that end, we AHA-labeled an allosteric protein (the PDZ2 domain from human tyrosine-phosphatase 1E) and furthermore covalently linked it to an azobenzene-derived photoswitch as to mimic its conformational transition upon ligand binding. To determine the strengths and limitations of the AHA label, in total six mutants have been investigated with the label at sites with varying properties.

View Article and Find Full Text PDF

A novel collagenolytic serine protease was identified and then purified (along with ficin) to apparent homogeneity from the latex of fig (Ficus carica, var. Brown Turkey) by two step chromatographic procedure using gel and covalent chromatography. The enzyme is a monomeric protein of molecular mass of 41 ± 9 kDa as estimated by analytical gel filtration chromatography.

View Article and Find Full Text PDF