Nephrol Dial Transplant
November 2024
Background And Hypothesis: Organ transplantation reverses cognitive impairment in chronic kidney disease (CKD), indicating that cognitive impairment driven by CKD is therapeutically amendable. We recently demonstrated that impaired cognition in CKD is linked to IL-1β-release from microglia and IL-1R1-signaling in neuronal cells, thereby identifying a signaling pathway that can be exploited therapeutically. However, the mechanism of IL-1β-maturation in microglia in CKD remains unknown.
View Article and Find Full Text PDFPericytes (PCs) are essential components of the blood brain barrier. Brain PCs are critical for dynamically regulating blood flow, for maintaining vascular integrity and their dysregulation is associated with a myriad of disorders such as Alzheimer's disease. To understand their physiological and molecular functions, studies have increasingly focused on primary brain PC isolation and culture.
View Article and Find Full Text PDFIn this paper, we report the complete mitochondrial genome of the northern smooth-tailed treeshrew , which was sequenced for the first time using the Illumina next-generation sequencing (NGS) technology. The total length of the mitochondrial genome is 16,844-16,850 bp and encodes 37 genes, including two ribosomal RNAs (rRNAs) and , 22 transfer RNAs (tRNAs), 13 protein-coding genes (PCGs), and a D-loop in the characteristic arrangement of family Tupaiidae (Mammalia: Scandentia). The overall base composition of the complete mitochondrial DNA is A (33.
View Article and Find Full Text PDFObesity promotes diverse pathologies, including atherosclerosis and dementia, which frequently involve vascular defects and endothelial cell (EC) dysfunction. Each organ has distinct EC subtypes, but whether ECs are differentially affected by obesity is unknown. Here we use single-cell RNA sequencing to analyze transcriptomes of ~375,000 ECs from seven organs in male mice at progressive stages of obesity to identify organ-specific vulnerabilities.
View Article and Find Full Text PDFEndothelial cells (ECs) lining blood vessels are exposed to mechanical forces, such as shear stress. These forces control many aspects of EC biology, including vascular tone, cell migration and proliferation. Despite a good understanding of the genes responding to shear stress, our insight into the transcriptional regulation of these genes is much more limited.
View Article and Find Full Text PDFThis study evaluates signatures of selection in the evolution of the mitochondrial DNA of voles, subfamily Arvicolinae, during the colonization of subterranean environments. The comparative sequence analysis of mitochondrial protein-coding genes of eight subterranean vole species (, three species of the genus : , and , two species of the genus : and , and ) and their closest aboveground relatives was applied using codon-substitution models. The highest number of selection signatures was detected in genes and The relaxation of selection was observed in most mitochondrial DNA protein-coding genes for subterranean species.
View Article and Find Full Text PDFArvicolinae is one of the most impressive placental radiations with over 150 extant and numerous extinct species that emerged since the Miocene in the Northern Hemisphere. The phylogeny of Arvicolinae has been studied intensively for several decades using morphological and genetic methods. Here, we sequenced 30 new mitochondrial genomes to better understand the evolutionary relationships among the major tribes and genera within the subfamily.
View Article and Find Full Text PDFBackground: Mitochondrial genes encode proteins involved in oxidative phosphorylation. Variations in lifestyle and ecological niche can be directly reflected in metabolic performance. Subterranean rodents represent a good model for testing hypotheses on adaptive evolution driven by important ecological shifts.
View Article and Find Full Text PDFThe subterranean voles of the genus are species of subfamily Arvicolinae well adapted to underground life. In this paper, we report the assemblies of complete mitochondrial genomes for three mole voles from genus - northern mole vole (16,376 bp), transcaucasian mole vole (16,540 bp), and southern mole vole s (16,388 bp). Each of three mitogenomes encode for 12S and 16S rRNAs, 22 tRNAs, 13 protein-coding genes, and D-loop in the characteristic arrangement of subfamily Arvicolinae (Rodentia: Cricetidae).
View Article and Find Full Text PDFMitochondrial DNA B Resour
November 2019
In this paper, we report the complete mitochondrial genome of the common pine vole , which was sequenced for the first time using Illumina next-generation sequencing (NGS) technology. The total length of the mitogenome was 16,398 bp and contained 12S, 16S rRNAs, 22 tRNAs, 13 protein-coding genes, and a 883 bp D-loop in the characteristic arrangement of subfamily Arvicolinae, Rodentia. Overall base composition of the complete mitochondrial DNA is A (33.
View Article and Find Full Text PDFThe adult mammalian heart consists of mononuclear and binuclear cardiomyocytes (CMs) with various ploidies. However, it remains unclear whether a variation in ploidy or number of nuclei is associated with distinct functions and injury responses in CMs, including regeneration. Therefore, we investigated transcriptomes and cellular as well as nuclear features of mononucleated and binucleated CMs in adult mouse hearts with and without injury.
View Article and Find Full Text PDFIn this article, we present the nearly complete mitochondrial genome of the Subalpine Kashmir vole (Arvicolinae, Cricetidae, Rodentia), assembled using data from Illumina next-generation sequencing (NGS) of the DNA from a century-old museum specimen. De novo assembly consisted of 16,341 bp and included all mitogenome protein-coding genes as well as 12S and 16S RNAs, tRNAs and D-loop. Using the alignment of protein-coding genes of 14 previously published Arvicolini tribe mitogenomes, seven Clethrionomyini mitogenomes, and also and outgroups, we conducted phylogenetic reconstructions based on a dataset of 13 protein-coding genes (PCGs) under maximum likelihood and Bayesian inference.
View Article and Find Full Text PDFGenetic factors undoubtedly affect the development of congenital heart disease (CHD) but still remain ill defined. We sought to identify genetic risk factors associated with CHD and to accomplish a functional analysis of SNP-carrying genes. We performed a genome-wide association study (GWAS) of 4034 White patients with CHD and 8486 healthy controls.
View Article and Find Full Text PDFJ Mol Cell Cardiol
February 2021
Background: Diabetes mellitus is a worldwide epidemic that causes high mortality due to cardiovascular complications, in particular heart failure. Diabetes is associated with profound pathophysiological changes in the heart. The aim of this study was to investigate the impact of diabetes on gene expression and DNA methylation in cardiac cells.
View Article and Find Full Text PDFThe vascular system is critical infrastructure that transports oxygen and nutrients around the body, and dynamically adapts its function to an array of environmental changes. To fulfil the demands of diverse organs, each with unique functions and requirements, the vascular system displays vast regional heterogeneity as well as specialized cell types. Our understanding of the heterogeneity of vascular cells and the molecular mechanisms that regulate their function is beginning to benefit greatly from the rapid development of single cell technologies.
View Article and Find Full Text PDFMutations in chromatin-modifying complexes and metabolic enzymes commonly underlie complex human developmental syndromes affecting multiple organs. A major challenge is to determine how disease-causing genetic lesions cause deregulation of homeostasis in unique cell types. Here we show that neural-specific depletion of three members of the non-specific lethal (NSL) chromatin complex-Mof, Kansl2 or Kansl3-unexpectedly leads to severe vascular defects and brain haemorrhaging.
View Article and Find Full Text PDFSince the generation of cell-type specific knockout models, the importance of inter-cellular communication between neural, vascular, and microglial cells during neural development has been increasingly appreciated. However, the extent of communication between these major cell populations remains to be systematically mapped. Here, we describe EMBRACE (embryonic brain cell extraction using FACS), a method to simultaneously isolate neural, mural, endothelial, and microglial cells to more than 94% purity in ∼4 h.
View Article and Find Full Text PDFActin-binding proteins are essential for linear and branched actin filament dynamics that control shape change, cell migration, and cell junction remodeling in vascular endothelium (endothelial cells [ECs]). The epithelial protein lost in neoplasm (EPLIN) is an actin-binding protein, expressed as EPLIN-α and EPLIN-β by alternative promoters; however, the isoform-specific functions are not yet understood. Aortic compared to cava vein ECs and shear stress-exposed cultured ECs express increased EPLIN-β levels that stabilize stress fibers.
View Article and Find Full Text PDFAims: Oscillatory shear stress (OSS) is an atheroprone haemodynamic force that occurs in areas of vessel irregularities and is implicated in the pathogenesis of atherosclerosis. Changes in signalling and transcriptional programme in response to OSS have been vigorously studied; however, the underlying changes in the chromatin landscape controlling transcription remain to be elucidated. Here, we investigated the changes in the regulatory element (RE) landscape of endothelial cells under atheroprone OSS conditions in an in vitro model.
View Article and Find Full Text PDFMotivation: Numerous experimental studies have suggested that polypeptide chains of large amyloidogenic regions zig-zag in β-serpentine arrangements. These β-serpentines are stacked axially and form the superpleated β-structure. Despite this progress in the understanding of amyloid folds, the determination of their 3D structure at the atomic level is still a problem due to the polymorphism of these fibrils and incompleteness of experimental structural data.
View Article and Find Full Text PDFHigh dietary salt intake may lead to vascular stiffness, which predicts cardiovascular diseases such as heart failure, and myocardial and cerebral infarctions as well as renal impairment. The vascular endothelium is a primary target for deleterious salt effects leading to dysfunction and endothelial stiffness. We hypothesize that the Ca- and bicarbonate-activated soluble adenylyl cyclase (sAC) contributes to Na/K-ATPase expression regulation in vascular endothelial cells and is an important regulator of endothelial stiffness.
View Article and Find Full Text PDF