Mitochondrial respiratory chain (RC) transforms the reductive power of NADH or FADH2 oxidation into a proton gradient between the matrix and cytosolic sides of the inner mitochondrial membrane, that ATP synthase uses to generate ATP. This process constitutes a bridge between carbohydrates' central metabolism and ATP-consuming cellular functions. Moreover, the RC is responsible for a large part of reactive oxygen species (ROS) generation that play signaling and oxidizing roles in cells.
View Article and Find Full Text PDFGlutamate plays diverse roles in neuronal cells, affecting cell energetics and reactive oxygen species (ROS) generation. These roles are especially vital for neuronal cells, which deal with high amounts of glutamate as a neurotransmitter. Our analysis explored neuronal glutamate implication in cellular energy metabolism and ROS generation, using a kinetic model that simulates electron transport details in respiratory complexes, linked ROS generation and metabolic reactions.
View Article and Find Full Text PDF