We describe a setup to perform systematic studies on the spreading of droplets of complex fluids under microgravity conditions. Tweaking the gravitational acceleration under which droplets are deposited provides access to different regimes of the spreading dynamics, as quantified through the Bond number. In particular, microgravity allows us to form large droplets while remaining in the regime where surface tension effects and internal driving stresses are predominant over hydrostatic forces.
View Article and Find Full Text PDFThe macroscopic response of granular solids is determined by the microscopic fabric of force chains, which, in turn, is intimately linked to the history of the solid. To query the influence of gravity on powder flow behavior, a granular material is subjected to compression by a piston in a closed container, on-ground and in microgravity (on parabolic flights). Results show that piston-probing densifies the packing, eventually leading to jamming of the material compressed by the piston, regardless of the gravitational environment.
View Article and Find Full Text PDF