A swarf of aluminum alloy with high corrosion resistance and ductility was successfully converted into fine hydro reactive powders via ball milling with silver powder and either lithium chloride or gallium. The latter substances significantly intensified particle size reduction, while silver formed 'cathodic' sites (Ag, AgAl), promoting Al corrosion in aqueous saline solutions with hydrogen generation. The diffraction patterns, microphotographs, and elemental analysis results demonstrated partial aluminum oxidation in the samples and their contamination with tungsten carbide from milling balls.
View Article and Find Full Text PDFTwo sorts of tablets were manufactured from ball-milled powder (aluminum scrap and copper) by cold pressing and spark plasma sintering. Their microstructure, phase, and elemental compositions were investigated via scanning electron microscopy, X-ray diffraction analysis, and energy-dispersive X-ray spectroscopy. New phases, AlCu and MgCuAl, were detected in the samples.
View Article and Find Full Text PDFIn the present study, composite materials were elaborated of mixed scrap of Mg-based casting alloys and low melting point Bi-Sn-Pb alloy by high energy ball milling, and their reactivity in NaCl solution with hydrogen release was tested. The impacts of the additive content and ball milling duration on their microstructure and hydrogen generation performance were investigated. Scanning electron microscopy (SEM) analysis revealed significant microstructural transformations of the particles during milling, and X-ray diffraction analysis (XRD) proved the formation of new intermetallic phases MgBi, MgSn, and MgPb.
View Article and Find Full Text PDFIn this investigation, composite materials were manufactured of mixed scrap of Mg-based alloys and low melting point Sn-Pb eutectic by high energy ball milling, and their hydrogen generation performance was tested in NaCl solution. The effects of the ball milling duration and additive content on their microstructure and reactivity were investigated. Scanning electron microscopy (SEM) analysis indicated notable structural transformations of the particles during ball milling, and X-ray diffraction analysis (XRD) proved the formation of new intermetallic phases MgSn and MgPb, which were aimed to augment galvanic corrosion of the base metal.
View Article and Find Full Text PDFMaterials (Basel)
December 2022
An alternative solution to the problem of aluminum-plastic multilayer waste utilization was suggested. The process can be used for hydrogen generation and layer separation. Three different sorts of aluminum-plastic sandwich materials were treated with an alkali solution.
View Article and Find Full Text PDFA method for magnesium scrap transformation into highly efficient hydroreactive material was elaborated. Tested samples were manufactured of magnesium scrap with no additives, or 5 and 10 wt.% Devarda's alloy, by ball milling for 0.
View Article and Find Full Text PDFThe effect of thermal treatment of aluminum core-shell particles on their oxidation kinetics in water for hydrogen production was investigated. The samples were obtained by dividing dried aluminum powder, partially oxidized by distilled water, into eight portions, which were thermally treated at temperatures of 120, 200, 300, 400, 450, 500, 550 and 600 °C. Alumina shell cracking at 500-600 °C enhances hydrogen generation due to uncovering of the aluminum cores, while sharp thickening of the protective oxide film on the uncovered aluminum surfaces at 550-600 °C significantly reduces reactivity of the core-shell particles.
View Article and Find Full Text PDFThe process of advanced aluminum-alumina powders production for selective laser melting was studied. The economically effective method of obtaining aluminum-alumina powdery composites for further selective laser melting was comprehensively studied. The aluminum powders with 10-20 wt.
View Article and Find Full Text PDF