Publications by authors named "Oles A"

Although cancer cachexia is classically characterized as a systemic inflammatory disorder, emerging evidence indicates that weight loss also associates with local tissue inflammation. We queried the regulation of this inflammation and its causality to cachexia by exploring skeletal muscle, whose atrophy strongly associates with poor outcomes. Using multiple mouse models and patient samples, we show that cachectic muscle is marked by enhanced innate immunity.

View Article and Find Full Text PDF

Background: Patients undergoing primary anatomic and reverse total shoulder arthroplasty (TSA) are often discharged with home health care (HHC) to provide access to at-home services and facilitate postoperative recovery and continued medical management. The purpose of this study was to evaluate the short-term postoperative outcomes of patients following primary TSA discharged with HHC, including medical and surgical complications, total cost of care, and total hospital length of stay (LOS).

Methods: The Nationwide Readmissions Database was reviewed for patients who underwent elective primary TSA between 2016 and 2020 for a retrospective cohort analysis.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) presents with a high mortality rate. Two important features of PDAC contribute to this poor outcome. The first is metastasis which occurs in ~ 80% of PDAC patients.

View Article and Find Full Text PDF

In recent years, nanostructures with hexagonal polytypes of gold have been synthesised, opening new possibilities in nanoscience and nanotechnology. As bulk gold crystallizes in the fcc phase, surface effects can play an important role in stabilizing hexagonal gold nanostructures. Here, we investigate several heterostructures with Ge substrates, including the fcc and hcp phases of gold that have been observed experimentally.

View Article and Find Full Text PDF

Background: Tumors are complex tissues containing collections of phenotypically diverse malignant and nonmalignant cells. We know little of the mechanisms that govern heterogeneity of tumor cells nor of the role heterogeneity plays in overcoming stresses, such as adaptation to different microenvironments. Osteosarcoma is an ideal model for studying these mechanisms-it exhibits widespread inter- and intra-tumoral heterogeneity, predictable patterns of metastasis, and a lack of clear targetable driver mutations.

View Article and Find Full Text PDF

SRY (sex determining region Y)-box 2 (SOX2)-labeled cells play key roles in chemoresistance and tumor relapse; thus, it is critical to elucidate the mechanisms propagating them. Single-cell transcriptomic analyses of the most common malignant pediatric brain tumor, medulloblastoma (MB), revealed the existence of astrocytic cells expressing sonic hedgehog (SHH) signaling biomarkers. Treatment with vismodegib, an SHH inhibitor that acts on Smoothened (Smo), led to increases in astrocyte-like cells.

View Article and Find Full Text PDF

Reducing the material sizes to the nanometer length scale leads to drastic modifications of the propagating lattice excitations (phonons) and their interactions with electrons and magnons. In EuO, a promising material for spintronic applications in which a giant spin-phonon interaction is present, this might imply a reduction of the degree of spin polarization in thin films. Therefore, a comprehensive investigation of the lattice dynamics and spin-phonon interaction in EuO films is necessary for practical applications.

View Article and Find Full Text PDF

We explore mechanisms of orbital-order decay in the doped Mott insulators R_{1-x}(Sr,Ca)_{x}VO_{3} (R=Pr,Y,La) caused by charged (Sr,Ca) defects. Our unrestricted Hartree-Fock analysis focuses on the combined effect of random charged impurities and associated doped holes up to x=0.5.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied 246 blood cancers and their responses to 63 drugs to uncover how different genetic mutations affect drug sensitivity.
  • They found that in chronic lymphocytic leukemia (CLL), a large portion of drug responses were connected to multiple mutations, especially involving the B cell receptor pathway and trisomy 12.
  • The findings suggest that mutations and signaling pathways can inform treatment strategies, highlighting the importance of genetic factors like IGHV mutation status in predicting responses to cancer therapies.
View Article and Find Full Text PDF

In this paper we address Lifshitz transition induced by applied external magnetic field in a case of iron-based superconductors, in which a difference between the Fermi level and the edges of the bands is relatively small. We introduce and investigate a two-band model with intra-band pairing in the relevant parameters regime to address a generic behaviour of a system with hole-like and electron-like bands in external magnetic field. Our results show that two Lifshitz transitions can develop in analysed systems and the first one occurs in the superconducting phase and takes place at approximately constant magnetic field.

View Article and Find Full Text PDF

Comprehensive studies of lattice dynamics in the ferromagnetic semiconductor EuO have been performed by a combination of inelastic x-ray scattering, nuclear inelastic scattering, and ab initio calculations. A remarkably large broadening of the transverse acoustic phonons was discovered at temperatures above and below the Curie temperature T_{C}=69  K. This result indicates a surprisingly strong momentum-dependent spin-phonon coupling induced by the spin dynamics in EuO.

View Article and Find Full Text PDF

We elucidate the effects of defect disorder and e-e interaction on the spectral density of the defect states emerging in the Mott-Hubbard gap of doped transition-metal oxides, such as Y(1-x)Ca(x)VO(3). A soft gap of kinetic origin develops in the defect band and survives defect disorder for e-e interaction strengths comparable to the defect potential and hopping integral values above a doping dependent threshold; otherwise only a pseudogap persists. These two regimes naturally emerge in the statistical distribution of gaps among different defect realizations, which turns out to be of Weibull type.

View Article and Find Full Text PDF

Bioconductor is an open-source, open-development software project for the analysis and comprehension of high-throughput data in genomics and molecular biology. The project aims to enable interdisciplinary research, collaboration and rapid development of scientific software. Based on the statistical programming language R, Bioconductor comprises 934 interoperable packages contributed by a large, diverse community of scientists.

View Article and Find Full Text PDF

We present rigorous topological order which emerges in a one-dimensional spin-orbital model due to the ring topology. Although this model with SU(2) spin and XY orbital interactions is known to exactly separate spins from orbitals by means of a unitary transformation on the open chain, we find that they are not quite independent when the chain is closed, and the spins form two half-rings carrying opposite quasimomenta. We show that on changing the topology from an open to a periodic chain, the degeneracy of the ground state is partially lifted while the low-energy excitations have a quadratic dispersion as a function of the total quasimomentum.

View Article and Find Full Text PDF

It is now recognized that extensive expression heterogeneities among cells precede the emergence of lineages in the early mammalian embryo. To establish a map of pluripotent epiblast (EPI) versus primitive endoderm (PrE) lineage segregation within the inner cell mass (ICM) of the mouse blastocyst, we characterized the gene expression profiles of individual ICM cells. Clustering analysis of the transcriptomes of 66 cells demonstrated that initially they are non-distinguishable.

View Article and Find Full Text PDF

We study two Kitaev-Heisenberg t-J-like models on a honeycomb lattice, focusing on the zigzag magnetic phase of Na(2)IrO(3), and investigate hole motion by exact diagonalization and variational methods. The spectral functions are quite distinct from those of cuprates and are dominated by large incoherent spectral weight at high energy, almost independent of the microscopic parameters-a universal and generic feature for zigzag magnetic correlations. We explain why quasiparticles at low energy are strongly suppressed in the photoemission spectra and determine an analog of a pseudogap.

View Article and Find Full Text PDF

We introduce and investigate an effective five-band model for t2g and eg electrons to describe doped cobalt oxides with Co(3+) and Co(4+) ions in two-dimensional CoO2 triangular lattice layers, as in Na1-xCoO2. The effective Hamiltonian includes anisotropic kinetic energy (due to both direct Co-Co and indirect Co-O-Co hoppings), on-site Coulomb interactions parameterized by intraorbital Hubbard repulsion U and full Hund's exchange tensor, crystal field terms and Jahn-Teller static distortions. We study it using correlated wave functions on 6 × 6 clusters with periodic boundary conditions.

View Article and Find Full Text PDF

We present the results of inelastic x-ray scattering for magnetite and analyze the energies and widths of the phonon modes with different symmetries in a broad range of temperature 125 < T < 293 K. The phonon modes with X(4) and Δ(5) symmetries broaden in a nonlinear way with decreasing T when the Verwey transition is approached. It is found that the maxima of phonon widths occur away from high-symmetry points, which suggests the incommensurate character of critical fluctuations.

View Article and Find Full Text PDF

Quantum phase transitions in the two-dimensional Kugel-Khomskii model on a square lattice are studied using the plaquette mean field theory and the entanglement renormalization Ansatz. When 3z(2)-r(2) orbitals are favored by the crystal field and Hund's exchange is finite, both methods give a noncollinear exotic magnetic order that consists of four sublattices with mutually orthogonal nearest-neighbor and antiferromagnetic second-neighbor spins. We derive an effective frustrated spin model with second- and third-neighbor spin interactions which stabilize this phase and follow from spin-orbital quantum fluctuations involving spin singlets entangled with orbital excitations.

View Article and Find Full Text PDF

The concept of spin-orbital entanglement on superexchange bonds in transition metal oxides is introduced and explained on several examples. It is shown that spin-orbital entanglement in superexchange models destabilizes the long-range (spin and orbital) order and may lead either to a disordered spin-liquid state or to novel phases at low temperature which arise from strongly frustrated interactions. Such novel ground states cannot be described within the conventionally used mean field theory which separates spin and orbital degrees of freedom.

View Article and Find Full Text PDF

We introduce and study an extended "t-U-J" two-orbital model for the pnictides that includes Heisenberg terms deduced from the strong coupling expansion. Including these J terms explicitly allows us to enhance the strength of the (π,0)-(0,π) spin order which favors the presence of tightly bound pairing states even in the small clusters that are here exactly diagonalized. The A(1g) and B(2g) pairing symmetries are found to compete in the realistic spin-ordered and metallic regime.

View Article and Find Full Text PDF

We introduce an effective model for e(g) electrons to describe quasi-two-dimensional layered La(2-x)Sr(x)NiO(4) nickelates and study it using correlated wavefunctions on 8 × 8 and 6 × 6 clusters. The effective Hamiltonian includes the kinetic energy, on-site Coulomb interactions for e(g) electrons (intraorbital U and Hund's exchange J(H)) and the coupling between e(g) electrons and Jahn-Teller distortions (static modes). The experimental ground state phases with inhomogeneous charge, spin and orbital order at the dopings x = 1/3 and 1/2 are reproduced very well by the model.

View Article and Find Full Text PDF

The structure, lattice dynamics and mechanical properties of magnesium hydroxide have been investigated by static density functional theory calculations as well as ab initio molecular dynamics. The hypothesis of a superstructure existing in the lattice formed by the hydrogen atoms has been tested. The elastic constants of the material have been calculated with a static deformations approach and are in fair agreement with the experimental data.

View Article and Find Full Text PDF

We introduce an effective model for e(g) electrons to describe three-dimensional perovskite (La(1 - x)Sr(x)MnO(3) and La(1 - x)Ca(x)MnO(3)) manganites and study the magnetic and orbital order on a 4 × 4 × 4 cluster using correlated wavefunctions. The model includes the kinetic energy, and on-site Coulomb interactions for e(g) electrons, antiferromagnetic superexchange interaction between S = 3/2 core spins, and the coupling between e(g) electrons and Jahn-Teller modes. The model reproduces the experimentally observed magnetic order: (i) an A-type antiferromagnetic phase in the undoped insulator LaMnO(3), with alternating e(g) orbitals and with small Jahn-Teller distortions, changing to a conducting phase at 32 GPa pressure, and (ii) ferromagnetic order in one-eighth-doped La(7/8)Sr(1/8)MnO(3) and in quarter-doped La(3/4)Sr(1/4)MnO(3) compounds.

View Article and Find Full Text PDF