Publications by authors named "Olena V Dmytruk"

Background: Actinomycetes Streptomyces davaonensis and Streptomyces cinnabarinus synthesize a promising broad-spectrum antibiotic roseoflavin, with its synthesis starting from flavin mononucleotide and proceeding through an immediate precursor, aminoriboflavin, that also has antibiotic properties. Roseoflavin accumulation by the natural producers is rather low, whereas aminoriboflavin accumulation is negligible. Yeasts have many advantages as biotechnological producers relative to bacteria, however, no recombinant producers of bacterial antibiotics in yeasts are known.

View Article and Find Full Text PDF

This review presents a comprehensive summary of the latest research in the field of bioremediation with filamentous fungi. The main focus is on the issue of recent progress in remediation of pharmaceutical compounds, heavy metal treatment and oil hydrocarbons mycoremediation that are usually insufficiently represented in other reviews. It encompasses a variety of cellular mechanisms involved in bioremediation used by filamentous fungi, including bio-adsorption, bio-surfactant production, bio-mineralization, bio-precipitation, as well as extracellular and intracellular enzymatic processes Processes for wastewater treatment accomplished through physical, biological, and chemical processes are briefly described.

View Article and Find Full Text PDF

Mammary tumours constitute more than half of neoplasms in female dogs from different countries. Genome sequences are associated with cancer susceptibility but there is little information available about genetic polymorphisms of glutathione S-transferase P1 (GSTP1) in canine cancers. The aim of this study was to find single nucleotide polymorphisms (SNPs) in GSTP1 of dogs (Canis lupus familiaris) with mammary tumours compared to healthy dogs and to determine the association between GSTP1 polymorphisms and the occurrence of these tumours.

View Article and Find Full Text PDF

Background: Fuel ethanol from lignocellulose could be important source of renewable energy. However, to make the process feasible, more efficient microbial fermentation of pentose sugars, mainly xylose, should be achieved. The native xylose-fermenting thermotolerant yeast Ogataea polymorpha is a promising organism for further development.

View Article and Find Full Text PDF

Background: Riboflavin is a precursor of FMN and FAD which act as coenzymes of numerous enzymes. Riboflavin is an important biotechnological commodity with annual market sales exceeding nine billion US dollars. It is used primarily as a component of feed premixes, a food colorant, a component of multivitamin mixtures and medicines.

View Article and Find Full Text PDF

Background: is one of the most thermotolerant xylose-fermenting yeast species reported to date. Several metabolic engineering approaches have been successfully demonstrated to improve high-temperature alcoholic fermentation by . Further improvement of ethanol production from xylose in depends on the identification of bottlenecks in the xylose conversion pathway to ethanol.

View Article and Find Full Text PDF

Background: The detection and quantification of uric acid in human physiological fluids is of great importance in the diagnosis and therapy of patients suffering from a range of disorders associated with altered purine metabolism, most notably gout and hyperuricaemia. The fabrication of cheap and reliable urate-selective amperometric biosensors is a challenging task.

Results: A urate-selective microbial biosensor was developed using cells of the recombinant thermotolerant methylotrophic yeast Hansenula polymorpha as biorecognition element.

View Article and Find Full Text PDF

Background: The thermotolerant methylotrophic yeast Hansenula polymorpha is capable of alcoholic fermentation of xylose at elevated temperatures (45 - 48 degrees C). Such property of this yeast defines it as a good candidate for the development of an efficient process for simultaneous saccharification and fermentation. However, to be economically viable, the main characteristics of xylose fermentation of H.

View Article and Find Full Text PDF

The thermotolerant methylotrophic yeast Hansenula polymorpha is able to ferment xylose to ethanol. To improve characteristics of xylose fermentation, the recombinant strain Delta xyl1 Delta xyl2-ADelta xyl2-B, with deletions of genes encoding first enzymes of xylose utilization (NAD(P)H-dependent xylose reductase and NAD-dependent xylitol dehydrogenases, respectively), was constructed and used as a recipient for co-overexpression of the Escherichia coli xylA gene coding for xylose isomerase and endogenous XYL3 gene coding for xylulokinase. The expression of both genes was driven by the H.

View Article and Find Full Text PDF