Invited for the cover of this issue are the groups of Alexander S. Oshchepkov, Konstantin Y. Amsharov, and M.
View Article and Find Full Text PDFA novel buckybowl catcher with an extended π-surface has been synthesized via cross-coupling of two bowl shaped bromoindacenopicene moieties with a tolyl linker. The obtained catcher has been unambiguously characterized by 2D-NMR and mass spectrometry. DFT calculations indicate that the curved shape of the receptor moieties is favourable for binding fullerenes.
View Article and Find Full Text PDFThe [n]cycloparaphenylenes ([n]CPPs)-n para-linked phenylenes that form a closed-loop-have attracted substantial attention due to their unique cyclic structure and highly effective para-conjugation leading to a myriad of fascinating electronic and optoelectronic properties. However, their strained topology prevents the π-extension of CPPs to convert them either into armchair nanobelts or planarized CPP macrocycles. Here we successfully tackle this long-standing challenge and present the bottom-up synthesis and characterization of atomically precise in-plane π-extended [12]CPP on Au(111) by low-temperature scanning probe microscopy and spectroscopy combined with density functional theory.
View Article and Find Full Text PDFLarge polycyclic aromatic hydrocarbons (PAHs) containing pentagons represent an important class of compounds that are considered to be superior materials in future nano-electronic applications. From this perspective, the development of synthetic approaches to large PAHs and nanographenes (NGs) is a matter of great importance. In this context indenoannulation appears to be the most practical way to introduce pentagons into NGs.
View Article and Find Full Text PDFZig-zag nanographenes are promising candidates for the applications in organic electronics due to the electronic properties induced by their periphery. However, the synthetic access to these compounds remains virtually unexplored. There is a lack in efficient and mild strategies origins in the reduced stability, increased reactivity, and low solubility of these compounds.
View Article and Find Full Text PDFHalogenated buckybowls or bowl-shaped polycyclic aromatic hydrocarbons (BS-PAHs) are key building blocks for the "bottom-up" synthesis of various carbon-based nanomaterials with outstanding potential in different fields of technology. The current state of the art provides quite a limited number of synthetic pathways to BS-PAHs; moreover, none of these approaches show high selectivity and tolerance of functional groups. Herein we demonstrate an effective route to BS-PAHs that includes directed intramolecular aryl-aryl coupling through C-F bond activation.
View Article and Find Full Text PDFThis Research Article describes the synthesis of an over 700-member library of (8R/8S)-3-R-8-aryl-6-oxo-3,4,7,8-tetrahydro-2H,6H-pyrido[2,1-b][1,3,5]thiadiazin-9-carbonitriles by uncatalyzed Mannich-type reaction of N-methylmorpholinium (4R/4S)-4-aryl-3-cyano-6-oxo-1,4,5,6-tetrahydropyridin-2-thiolates with a set of primary amines and excessive HCHO. The scope and limitations of the reaction were studied. Starting thiolates were obtained in yields of 53-82% by multicomponent reaction of aromatic aldehydes, cyanothioacetamide, 2,2-dimethyl-1,3-dioxane-4,6-dione (Meldrum's acid), and N-methylmorpholine, followed by heterocyclization of the resulting Michael adducts.
View Article and Find Full Text PDF