Surgical site infection is a relatively common and devastating complication following pediatric orthopedic surgery. Many infections have been determined to be the result of settled airborne particles on surgical equipment and the sterile field. Fiberglass casts are commonly used orthopedic fixation devices before and after surgery; however, fiberglass casting material is expelled during the removal process and represents an uninvestigated area for the possibility of cast saw dust as a source of airborne bacterial contamination in an operating room setting.
View Article and Find Full Text PDFBackground: The objective of this study is to establish Raman signatures from pure cultures of different Candida species using Raman Spectroscopy (RS) and use these signatures for rapid identification of unknown Candida species.
Methods: Pure cultures of five Candida species were evaluated using RS to build a limited signature library. 'Raman Processing' (RP) software was used for Principal Component Analysis (PCA) and Differential Functional Analysis (DFA).
The proven efficacy of renal transplantation has made it the definitive treatment for end-stage renal disease. Despite its wide acceptance, transplantation has been limited by organ shortages. In the face of this, preservation of allograft longevity is essential.
View Article and Find Full Text PDFIntroduction: At present, the diagnosis of ulcerative colitis (UC) requires the histologic demonstration of characteristic mucosal inflammatory changes. A rapid and noninvasive diagnosis would be of value, especially if it could be adapted to a simple rectal probe. Raman spectroscopy creates a molecular fingerprint of substances by detecting laser light scattered from asymmetric, vibrating, and chemical bonds.
View Article and Find Full Text PDFRaman spectroscopy is an optical technique capable of identifying chemical constituents of a sample by their unique set of molecular vibrations. Research on the applicability of Raman spectroscopy in the differentiation of cancerous versus normal tissues has been ongoing for many years, and has yielded successful results in the context of prostate, breast, brain, skin, and head and neck cancers as well as pediatric tumors. Recently, much effort has been invested on developing noninvasive "Raman" probes to provide real-time diagnosis of potentially cancerous tumors.
View Article and Find Full Text PDFAcute rejection (AR) remains problematic in renal transplantation. As a marker, serum creatinine is limited, warranting a more effective screening tool. Raman spectroscopy (RS) can detect T-cell activation with high sensitivity.
View Article and Find Full Text PDFAcute rejection (AR) remains a significant complication in renal transplant patients. Using serum creatinine for AR screening has proven problematic, and thus a noninvasive, highly sensitive and specific test is needed. T cells from human peripheral blood were analyzed using Raman spectroscopy.
View Article and Find Full Text PDFThe attachment of cells onto solid supports is fundamental in the development of advanced biosensors or biochips. In this work, we characterize cortical neuron adhesion, growth, and distribution of an adhesive layer, depending on the molecular structure and composition . Neuronal networks are successfully grown on amino-terminated alkanethiol self-assembled monolayer (SAM) on a gold substrate without adhesion protein interfaces.
View Article and Find Full Text PDFFunctional neural stimulation requires good interface between the neural cells and the electrode surfaces. In order to study the effect of electrode materials and surface structure on cell adhesion and biocompatibility, we cultured cortical neurons on thin films of platinum and iridium oxide. We used both flat, as-deposited and laser micro-structured films.
View Article and Find Full Text PDFThe success of neuronal implantable microsystems relies on the quality of the interface with neuronal cells. Depending on the application, specifically engineered surfaces may either prevent or enhance cell/tissue growth with an appropriate host response. The surface chemistry and topography have major effects on the cell adherence and the interaction between the tissue and devices.
View Article and Find Full Text PDFDNA single-strand breaks (SSBs) were quantified by single-cell gel electrophoresis and micronucleated and apoptotic cells were quantified by microscopic assays in peripheral blood lymphocytes after irradiation on ice with 2 Gy of 60Co gamma radiation, and their association with polymorphisms of genes that encode proteins of different DNA repair pathways and influence cancer risk (XPD codon 312Asp --> Asn and 751Lys --> Gln, XRCC1 399Arg --> Gln, and MGMT 84Leu --> Phe) was studied. In unirradiated lymphocytes, SSBs were significantly more frequent in individuals older than the median age (52 years) (P = 0.015; n = 81), and the frequency of apoptotic or micronucleated cells was higher in individuals with alleles coding for Asn at XPD 312 or Gln at 751 (P = 0.
View Article and Find Full Text PDFA population study is reported in which the DNA damage induced by g-radiation (2 Gy) and the kinetics of the subsequent repair were estimated by the comet and micronucleus assays in isolated lymphocytes of 82 healthy donors and patients with head and neck cancer before radiotherapy. The parameters of background and radiation-induced DNA damage, rate of repair, and residual non-repaired damage were measured by comet assay, and the repair kinetics for every donor were computer-fitted to an exponential curve. The level of background DNA damage before irradiation measured by comet assay as well as the level of micronuclei were significantly higher in the head and neck cancer patient group than in the healthy donors, while the parameters of repair were widely scattered in both groups.
View Article and Find Full Text PDFIn the present study, the effect of exposure to ascorbic acid (vitamin C) after gamma-ray-induced chromosomal damage in cultured human lymphocytes was examined to explore the mechanism by which this antioxidant vitamin protects irradiated cells Non-irradiated lymphocytes were exposed to increasing concentrations of ascorbic acid (1-100 micro g/ml) and DNA damage was estimated using chromosomal aberration analysis and the comet assay. The results showed that ascorbic acid did not influence the frequency of chromosomal aberrations in non-irradiated cells, except at the highest concentration (20 micro g/ml), which induced breakage-type chromosomal aberrations. Vitamin C at the concentration of 50 micro g/ml caused DNA damage detected by the comet assay.
View Article and Find Full Text PDFToxicity of cyanobacterial blooms, an increasing problem around the world, is connected to the increase in bloom samples containing microcystins, caused by excessive eutrophication of drinking- and recreational water reservoirs. Microcystins are the most common group of cyanobacterial hepatotoxins. In Poland they are produced mainly by the Microcystis genus.
View Article and Find Full Text PDFHallmarks of the terminal stages of apoptosis are genomic DNA fragmentation and chromatin condensation. Here, we have studied the mechanism of condensation both in vitro and in vivo. We found that DNA fragmentation per se of isolated nuclei from non-apoptotic cells induced chromatin condensation that closely resembles the morphology seen in apoptotic cells, independent of ATP utilization, at physiological ionic strengths.
View Article and Find Full Text PDFThe study examines the relationship between lipid peroxidation, DNA damage, and cell morphology after the exposure of R1 Rhabdomyosarcoma cells to two different dose-rates of gamma rays. Exponential cultures of R1 cells were irradiated with single dose of 5 Gy at high dose rate (0.833 Gy/min) and low dose rate (0.
View Article and Find Full Text PDF