Heteropolysaccharides are among the most widely distributed compounds in nature, acting as both tissue building blocks and as a source of nutrients. Their physicochemical and biological properties have been studied thoroughly; however, the microstructural properties of heteropolysaccharides are still poorly understood. This study aims to investigate the micro-structural peculiarities of agarose, gum arabic, hyaluronic and alginic acids by means of confocal laser scanning microscopy (CLSM) and cryogenic scanning electron microscopy (cryo-SEM).
View Article and Find Full Text PDFAggregation of the polydopamine (PDA) molecular building blocks at the air/water interface leads to obtaining large surface nanometric-thin films. This mechanism follows two possible pathways, namely, covalent or non-covalent self-assembly, which result in a different degree of structure order and, consequently, different structural properties. Control of this mechanism could be vital for applications that require true self-support PDA free-standing films, for example, electrochemical sensing or membrane technology.
View Article and Find Full Text PDFCryogenic electron microscopy became a powerful tool to study biological objects. For non-biological objects (solutions, gels, dispersions, clays), the polemic about interpretation of cryogenic microscopy results is still in progress splitting on two contradictive trends: considering structure as a near-real state of the sample or as freezing artefacts. In this study, a microstructure of a range of stable aqueous solutions and dispersions (agar, kaolin, montmorillonite, nanoparticles) was investigated by means of cryo-SEM and confocal LSM in order to compare cryo-fixed and unfrozen structures.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2020
The development of tissue scaffolds able to provide proper and accelerated regeneration of tissue is a main task of tissue engineering. We developed a nanocomposite gel that may be used as an injectable therapeutic scaffold. The nanocomposite gel is based on biocompatible gelling agents with embedded nanoparticles (iron oxide, silver, and hydroxyapatite) providing therapeutic properties.
View Article and Find Full Text PDFCombination therapy remains one of the most promising and intensively developed direction in cancer treatment. This study is aimed to combine and investigate the anticancer properties of silver nanoparticles (NPs) and Amanita muscaria mushroom in gel formulation. For this, hyaluronic acid was used as gel-forming agent, whereas Amanita muscaria extract was used as capping agent during silver and ultrasmall iron oxide (MAg) NPs synthesis.
View Article and Find Full Text PDFMicro/nanostructures, which are assembled from various nanosized building blocks are of great scientific interests due to their combined features in the micro- and nanometer scale. This study for the first time demonstrates that ultrasmall superparamagnetic iron oxide nanoparticles can change the microstructure of their hydrocolloids under the action of external magnetic field. We aimed also at the establishment of the physiological temperature (39 °C) influence on the self-organization of silver and ultrasmall iron oxides nanoparticles (NPs) in hydrocolloids.
View Article and Find Full Text PDFBackground: Investigation of new effective drugs against the methicillin-resistant strains of Staphylococcus aureus (MRSA) is an urgent issue of modern medicine. Antiseptics as an alternative of antibiotics are strong, sustained, and active preparations against resistant strains and do not violate microbiocenosis.
Materials And Methods: The activity of in situ prepared chitosan-Ag nanoparticles (Ag NPs) solution with different component ratio was tested against MRSA isolated from patients.
Colloids Surf B Biointerfaces
April 2017
Though the cytotoxic properties of magnetite nanoparticles (NPs) are rather well investigated and known to be dose dependent and rather low, surface functionalization can drastically change their properties. To determine whether the cytotoxicity of magnetite/Ag/antibiotic NPs may be associated, among other things, with iron, silver and antibiotic release, this study investigates the release profiles and cytotoxicity of magnetite/Ag/rifampicin and magnetite/Ag/doxycycline NPs compares it similar profiles from magnetite, magnetite/Ag NPs and antibiotics. It was established that the studied NPs released not only water-soluble substances, such as antibiotics, but also poorly-soluble ones, such as iron and silver.
View Article and Find Full Text PDFMagnetite nanoparticles (NPs) decorated with silver (magnetite/Ag) are intensively investigated due to their application in the biomedical field. We demonstrate that the increase of silver content on the surface of nanoparticles improves the adsorptivity of antibiotic rifampicin as well as antibacterial properties. The use of ginger extract allowed to improve the silver nucleation on the magnetite surface that resulted in an increase of silver content.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
October 2015
The article is devoted to preparation and characterization of magnetite/silver/antibiotic nanocomposites for targeted antimicrobial therapy. Magnetite nanopowder was produced by thermochemical technique; silver was deposited on the magnetite nanoparticles in the form of silver clusters. Magnetite/silver nanocomposite was investigated by XRD, SEM, TEM, AFM, XPS, EDX techniques.
View Article and Find Full Text PDF