Publications by authors named "Oleksiy Andrusyak"

High-radiance lasers are desired for many applications in defense and manufacturing. Spectral beam combining (SBC) by volume Bragg gratings (VBGs) is a very promising method for high-radiance lasers that need to achieve 100 kW level power. Laser-induced heating of VBGs under high-power radiation presents a challenge for maintaining Bragg resonance at various power levels without mechanical realignment.

View Article and Find Full Text PDF

Spectral beam combining (SBC) by volume Bragg gratings (VBGs) recorded in photo-thermo-refractive (PTR) glass is a powerful tool for laser applications that require higher radiance than a single laser unit can achieve. The beam-combining factor (BCF) is introduced as a tool to compare various beam-combining methods and experiments. It describes the change of radiance provided by a beam-combining system but is not affected by the initial beam quality of the combined lasers.

View Article and Find Full Text PDF

We propose using cross-correlation frequency-resolved optical gating for dispersion characterization of optical elements with high dispersion, such as ultrashort pulse stretchers and compressors. The technique is based on spectrally resolved second-order cross correlation (sum frequency generation) of a stretched pulse with a reference short pulse. Dispersion of optical elements with a high pulse stretching ratio can be completely characterized using this method, even with moderate resolution of spectral measurements of the cross-correlation signal.

View Article and Find Full Text PDF

The possibility of achieving multikilowatt laser radiation by spectrally combining beams using volume Bragg gratings (VBGs) is shown. The VBGs recorded in a photothermorefractive glass exhibit long-term stability of all its parameters in high-power laser beams with power density >1 MW/cm2 in the cw beam of total power on a kilowatt level. We consider an architecture-specific beam-combining scheme and address the cross-talk minimization problem based on optimal channel positioning.

View Article and Find Full Text PDF