ACS Appl Mater Interfaces
March 2024
Single particle tracking (SPT) is a powerful technique for real-time microscopic visualization of the movement of individual biomolecules within or on the surface of living cells. However, SPT often suffers from the suboptimal performance of the photon-emitting labels used to tag the biomolecules of interest. For example, fluorescent dyes have poor photostability, while quantum dots suffer from blinking that hampers track acquisition and interpretation.
View Article and Find Full Text PDFFluorescence microscopy imaging of individual HIV-1 viruses necessitates a specific labeling of viral structures that minimally perturbs the infection process. Herein, we used HIV-1 pseudoviruses containing NCp7 fused to a tetracystein (TC) tag, labeled by a biarsenical fluorescein derivative (FlAsH) to quantitatively monitor the NCp7 protein concentration in the viral cores during the early stages of infection. Single particle imaging of individual pseudoviruses with defined ratios of TC-tagged to non tagged NCp7 proteins, together with theoretical modeling of energy transfer between FlAsH dyes, showed that the high packaging of TC-tagged proteins in the viral cores causes a strong fluorescence quenching of FlAsH and that the fluorescence intensity of individual viral complexes is an appropriate parameter to monitor changes in the amount of NCp7 molecules within the viral particles during infection.
View Article and Find Full Text PDFSingle-particle luminescence microscopy is a powerful method to extract information on biological systems that is not accessible by ensemble-level methods. Upconversion nanoparticles (UCNPs) are a particularly promising luminophore for single-particle microscopy as they provide stable, non-blinking luminescence and allow the avoidance of biological autofluorescence by their anti-Stokes emission. Recently, ensemble measurements of diluted aqueous dispersions of UCNPs have shown the instability of luminescence over time due to particle dissolution-related effects.
View Article and Find Full Text PDFUpconverting nanoparticles (UCNPs) are luminophores that have been investigated for a multitude of biological applications, notably low-background imaging, high-sensitivity assays, and cancer theranostics. In these applications, they are frequently used as a donor in resonance energy transfer (RET) pairs. However, because of the peculiarity and non-linearity of their luminescence mechanism, their behavior as a RET pair component has been difficult to predict quantitatively, preventing their optimization for subsequent applications.
View Article and Find Full Text PDF