The present study reports on the development, adaptation, and optimization of a novel monoenzyme conductometric biosensor based on a recombinant arginine deiminase (ADI) for the determination of arginine in dietary supplements with a high accuracy of results. Aiming for the highly sensitive determination of arginine in real samples, we studied the effect of parameters of the working buffer solution (its pH, buffer capacity, ionic strength, temperature, and protein concentration) on the sensitivity of the biosensor to arginine. Thus, it was determined that the optimal buffer is a 5 mM phosphate buffer solution with pH 6.
View Article and Find Full Text PDFβ-Catenin signaling pathway regulates cardiomyocytes proliferation and differentiation, though its involvement in metabolic regulation of cardiomyocytes remains unknown. We used one-day-old mice with cardiac-specific knockout of β-catenin and neonatal rat ventricular myocytes treated with β-catenin inhibitor to investigate the role of β-catenin metabolism regulation in perinatal cardiomyocytes. Transcriptomics of perinatal β-catenin-ablated hearts revealed a dramatic shift in the expression of genes involved in metabolic processes.
View Article and Find Full Text PDFThe combination of advantages of using zeolites and gold nanoparticles were aimed to be used for the first time to improve the characteristic properties of ion selective field-effect transistor (ISFET)-based creatinine biosensors. The biosensors with covalently cross-linked creatinine deiminase using glutaraldehyde (GA) were used as a control group, and the effect of different types of zeolites on biosensor responses was investigated in detail by using silicalite, zeolite beta (BEA), nano-sized zeolite beta (Nano BEA) and zeolite BEA including gold nanoparticle (BEA-Gold). The presence of gold nanoparticles was investigated by ICP, STEM-EDX and XPS analysis.
View Article and Find Full Text PDFIn the work, silicalite particles were used for the surface modification of pH-sensitive field-effect transistors (pH-FETs) with the purpose of developing new creatinine-sensitive biosensor. Creatinine deiminase (CD) adsorbed on the surface of silicalite-coated pH-FET served as a bioselective membrane. The biosensor based on CD immobilized in glutaraldehyde vapor (GA) was taken as control.
View Article and Find Full Text PDFThe application of silicalite for improvement of enzyme adsorption on new stainless steel electrodes is reported. Glucose oxidase (GOx) was immobilized by two methods: cross-linking by glutaraldehyde (GOx-GA) and cross-linking by glutaraldehyde along with GOx adsorption on silicalite-modified electrode (SME) (GOx-SME-GA). The GOx-SME-GA biosensors were characterized by a four- to fivefold higher sensitivity than GOx-GA biosensor.
View Article and Find Full Text PDFThe application of silicalite for improvement of working characteristics of conductometric enzyme biosensors for determination of sucrose was studied in this research. Biosensors based on different types of silicalite-modified electrodes were studied and compared according to their analytical characteristics. Polyethylenimine/glutaraldehyde/silicalite-modified biosensors showed higher sensitivity compared with others type of biosensors.
View Article and Find Full Text PDFA number of potentiometric biosensors based on coimmobilization of enzymes with different types of zeolite on pH-ion-sensitive field-effect transistor (ISFET) have been developed. Their working characteristics have been determined and compared. It was shown that clinoptilolite and zeolite Beta polymorph A (BEA) are more promising for creating biosensors than zeolite A.
View Article and Find Full Text PDFA phenomenon of changes in photoluminescence of porous silicon at variations in medium pH is proposed to be used as a basis for the biosensor system development. The method of conversion of a biochemical signal into an optical one is applied for direct determination of glucose and urea as well as for inhibitory analysis of heavy metal ions. Changes in the quantum yield of porous silicon photoluminescence occur at varying pH of the tested solution due to the enzyme-substrate reaction.
View Article and Find Full Text PDFThe majority of biosensors for adenosine-5'-triphosphate (ATP) determination are based on cascades of enzymatic reactions; therefore, they are sensitive to glucose or glycerol (depending on the enzymatic system) as well as to ATP. The presence of unknown concentrations of these substances in the sample greatly complicates the determination of ATP. To overcome this disadvantage of known biosensors, we developed a biosensor system consisting of two biosensors: the first one is based on glucose oxidase and is intended for measuring glucose concentration, and the second one is based on glucose oxidase and hexokinase and is sensitive toward both glucose and ATP.
View Article and Find Full Text PDFA possibility of the creation of potentiometric biosensor by adsorption of enzyme urease on zeolite was investigated. Several variants of zeolites (nano beta, calcinated nano beta, silicalite, and nano L) were chosen for experiments. The surface of pH-sensitive field-effect transistors was modified with particles of zeolites, and then the enzyme was adsorbed.
View Article and Find Full Text PDF