Publications by authors named "Olejnik K"

This study explores the potential use of mould biomass and waste fibres for the production of agrotextiles. First, 20 mould strains were screened for efficient mycelium growth, with optimized conditions of temperature, sources of carbon and nitrogen in the medium, and type of culture (submerged or surface). A method was developed for creating a biocomposite based on the mould mycelium, reinforced with commercial bleached softwood kraft (BSK) pulp and fibre additives (cotton, hemp).

View Article and Find Full Text PDF

With the rapid advancement of diabetes technology, the number of patients with type 1 diabetes (T1D) using automated insulin delivery (AID) systems is increasing, making the presence of such patients in the perioperative period more common. This study presents two cases of T1D patients who underwent thyroidectomy while using AID, following a protocol designed in collaboration with the diabetology, anesthesiology, and surgical teams. Two female patients, aged 12 and 33 years, both using AID systems, were admitted for elective thyroidectomy.

View Article and Find Full Text PDF
Article Synopsis
  • Claudins, specifically claudin-1 and claudin-4, are tight junction proteins involved in the progression of thyroid cancers and are potential therapeutic targets.
  • The study analyzed 162 thyroid samples from patients with various pathologies, finding distinct expression patterns: goiters had negative claudin-1 and mostly positive claudin-4, while papillary thyroid cancers and adenomas showed positive claudin-1 and claudin-4.
  • High expression levels of claudin-1 were linked to poorer overall survival rates in patients, highlighting its role as a prognostic factor and indicating a need for further trials to explore claudin targeting in clinical settings.
View Article and Find Full Text PDF

Recently, MnTe was established as an altermagnetic material that hosts spin-polarized electronic bands as well as anomalous transport effects like the anomalous Hall effect. In addition to these effects arising from altermagnetism, MnTe also hosts other magnetoresistance effects. Here, we study the manipulation of the magnetic order by an applied magnetic field and its impact on the electrical resistivity.

View Article and Find Full Text PDF

Background: SARS-CoV-2 can damage human placentas, leading to pregnancy complications, such as preeclampsia and premature birth. This study investigates the histopathological changes found in COVID-19-affected placentas.

Materials And Methods: This study included 23 placentas from patients with active COVID-19 during delivery and 22 samples from patients without COVID-19 infection in their medical history.

View Article and Find Full Text PDF

Phases with spontaneous time-reversal ( ) symmetry breaking are sought after for their anomalous physical properties, low-dissipation electronic and spin responses, and information-technology applications. Recently predicted altermagnetic phase features an unconventional and attractive combination of a strong -symmetry breaking in the electronic structure and a zero or only weak-relativistic magnetization. In this work, we experimentally observe the anomalous Hall effect, a prominent representative of the -symmetry breaking responses, in the absence of an external magnetic field in epitaxial thin-film MnSi with a vanishingly small net magnetic moment.

View Article and Find Full Text PDF

The anomalous Hall effect, commonly observed in metallic magnets, has been established to originate from the time-reversal symmetry breaking by an internal macroscopic magnetization in ferromagnets or by a noncollinear magnetic order. Here we observe a spontaneous anomalous Hall signal in the absence of an external magnetic field in an epitaxial film of MnTe, which is a semiconductor with a collinear antiparallel magnetic ordering of Mn moments and a vanishing net magnetization. The anomalous Hall effect arises from an unconventional phase with strong time-reversal symmetry breaking and alternating spin polarization in real-space crystal structure and momentum-space electronic structure.

View Article and Find Full Text PDF

Up-converting nanoparticles can be a demand for requirements in many areas, including bioimaging and conversion of energy, but also in the battle against counterfeiting. The properties of lanthanide ions make falsification difficult or even impossible using appropriately designed systems. The proposition of such an approach is the NaErF:Tm@NaYF core@shell up-converting nanoparticles combined with transparent varnishes.

View Article and Find Full Text PDF

This article describes how crystalline or fibrous nanocellulose influences the mechanical properties of paper substrate. In this context, we used commercially available cellulose nanocrystals, mechanically prepared cellulose nanofibers dispersed in water or ethanol, and carboxy cellulose nanofibers. Selective reinforcement of the paper treated with the nanocellulose samples mentioned above was observed.

View Article and Find Full Text PDF

Starch is an inexpensive, easily accessible, and widespread natural polymer. Due to its properties and availability, this polysaccharide is an attractive precursor for sustainable products. Considering its exploitation in adhesives and coatings, the major drawback of starch is its high affinity towards water.

View Article and Find Full Text PDF

The interest in understanding scaling limits of magnetic textures such as domain walls spans the entire field of magnetism from its physical fundamentals to applications in information technologies. Here, we explore antiferromagnetic CuMnAs in which imaging by x-ray photoemission reveals the presence of magnetic textures down to nanoscale, reaching the detection limit of this established microscopy in antiferromagnets. We achieve atomic resolution by using differential phase-contrast imaging within aberration-corrected scanning transmission electron microscopy.

View Article and Find Full Text PDF

Highly active antiretroviral therapy (HAART) is used in HIV-infected patients. Alongside the prolongation of patients' life, adverse side effects associated with long-term therapy are becoming an increasing problem. Therefore, optimizing of HAART is extremely important.

View Article and Find Full Text PDF

This work reports a modification of a fibrous cellulose material (paper) by the addition of polyacrylonitrile (PAN) fibres doped with 10,12-pentacosadiynoic acid (PDA). The fibres are sensitive to ultraviolet (UV) light. When the paper containing PAN-PDA is irradiated with UV light it changes colour to blue as a consequence of interaction of the light with PDA.

View Article and Find Full Text PDF

The transplantation of pancreatic islet cells could restore glycaemic control in patients with type-I diabetes. Microspheres for islet encapsulation have enabled long-term glycaemic control in diabetic rodent models; yet human patients transplanted with equivalent microsphere formulations have experienced only transient islet-graft function, owing to a vigorous foreign-body reaction (FBR), to pericapsular fibrotic overgrowth (PFO) and, in upright bipedal species, to the sedimentation of the microspheres within the peritoneal cavity. Here, we report the results of the testing, in non-human primate (NHP) models, of seven alginate formulations that were efficacious in rodents, including three that led to transient islet-graft function in clinical trials.

View Article and Find Full Text PDF

Antiferromagnets are enriching spintronics research by many favorable properties that include insensitivity to magnetic fields, neuromorphic memory characteristics, and ultra-fast spin dynamics. Designing memory devices with electrical writing and reading is one of the central topics of antiferromagnetic spintronics. So far, such a combined functionality has been demonstrated via 90° reorientations of the Néel vector generated by the current-induced spin orbit torque and sensed by the linear-response anisotropic magnetoresistance.

View Article and Find Full Text PDF

Introduction: The aim of this study was to compare hormonal stress responses (changes in adrenaline, noradrenaline, and cortisol concentrations) to surgical injury during total intravenous propofol anaesthesia and volatile anaesthesia with sevoflurane in patients subjected to anterior resection of the rectum.

Material And Methods: The prospective randomised study included 61 patients qualified for anterior resection of the rectum. The subjects were randomised into two groups, based on the type of anaesthesia: 1) Group I (TIVA, n = 31), administered total intravenous propofol anaesthesia, and 2) Group II (VIMA, n = 30), administered volatile induction and maintenance sevoflurane anaesthesia.

View Article and Find Full Text PDF

The speed of writing of state-of-the-art ferromagnetic memories is physically limited by an intrinsic gigahertz threshold. Recently, realization of memory devices based on antiferromagnets, in which spin directions periodically alternate from one atomic lattice site to the next has moved research in an alternative direction. We experimentally demonstrate at room temperature that the speed of reversible electrical writing in a memory device can be scaled up to terahertz using an antiferromagnet.

View Article and Find Full Text PDF

Antiferromagnets offer a unique combination of properties including the radiation and magnetic field hardness, the absence of stray magnetic fields, and the spin-dynamics frequency scale in terahertz. Recent experiments have demonstrated that relativistic spin-orbit torques can provide the means for an efficient electric control of antiferromagnetic moments. Here we show that elementary-shape memory cells fabricated from a single-layer antiferromagnet CuMnAs deposited on a III-V or Si substrate have deterministic multi-level switching characteristics.

View Article and Find Full Text PDF

This paper assesses the instrumental resolution of a mechanical extensometer in light of its recent automatisation. The instrument takes advantage of the moire phenomenon of optical interference to measure angular rotation in two perpendicular planes and displacement in three dimensions. Our assessment systematically defines an analytical solution for the complete interpretation of a generic moire pattern and a set of mathematical approximations for the moire patterns used to measure rotation and displacement.

View Article and Find Full Text PDF

Commercial magnetic memories rely on the bistability of ordered spins in ferromagnetic materials. Recently, experimental bistable memories have been realized using fully compensated antiferromagnetic metals. Here we demonstrate a multiple-stable memory device in epitaxial MnTe, an antiferromagnetic counterpart of common II-VI semiconductors.

View Article and Find Full Text PDF

Spin-valves or spin-transistors in magnetic memories and logic elements are examples of structures whose functionality depends crucially on the length and time-scales at which spin-information is transferred through the device. In our work we employ spatially resolved optical pump-and-probe technique to investigate these fundamental spin-transport parameters in a model semiconductor system. We demonstrate that in an undoped GaAs/AlGaAs layer, spins are detected at distances reaching more than ten microns at times as short as nanoseconds.

View Article and Find Full Text PDF

Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating current-induced internal fields whose sign alternates with the periodicity of the antiferromagnetic lattice. Using these fields, which couple strongly to the antiferromagnetic order, we demonstrate room-temperature electrical switching between stable configurations in antiferromagnetic CuMnAs thin-film devices by applied current with magnitudes of order 10(6) ampere per square centimeter.

View Article and Find Full Text PDF

The transplantation of glucose-responsive, insulin-producing cells offers the potential for restoring glycemic control in individuals with diabetes. Pancreas transplantation and the infusion of cadaveric islets are currently implemented clinically, but these approaches are limited by the adverse effects of immunosuppressive therapy over the lifetime of the recipient and the limited supply of donor tissue. The latter concern may be addressed by recently described glucose-responsive mature beta cells that are derived from human embryonic stem cells (referred to as SC-β cells), which may represent an unlimited source of human cells for pancreas replacement therapy.

View Article and Find Full Text PDF