Publications by authors named "Oleh V Stasyk"

Arginine-deprivation therapy is a rapidly developing metabolic anticancer approach. To overcome the resistance of some cancer cells to this monotherapy, rationally designed combination modalities are needed. In this report, we evaluated for the first time indospicine, an arginine analogue of Indigofera plant genus origin, as potential enhancer compound for the metabolic therapy that utilizes recombinant human arginase I.

View Article and Find Full Text PDF

The HpGcr1, a hexose transporter homologue from the methylotrophic yeast Hansenula (Ogataea) polymorpha, was previously identified as being involved in glucose repression. Intriguingly, potential HpGcr1 orthologues are found only in the genomes of a few yeasts phylogenetically closely related to H. polymorpha, but are absent in all other yeasts.

View Article and Find Full Text PDF

Background: is one of the most thermotolerant xylose-fermenting yeast species reported to date. Several metabolic engineering approaches have been successfully demonstrated to improve high-temperature alcoholic fermentation by . Further improvement of ethanol production from xylose in depends on the identification of bottlenecks in the xylose conversion pathway to ethanol.

View Article and Find Full Text PDF

The paradoxical role of ER stress in malignant diseases is only just being unraveled and remains incompletely understood. A particular challenge is the complex interplay between spaciotemporal and locoregional microenvironmental constraints in solid tumors and stress responses upon treatment; thus, the potential for new combinatorial therapeutic options to foster the coincidence of ER stress-related deadly events is likely to be underestimated. Without claiming this review to be complete, we present a comprehensive overview of the signaling mechanisms associated with the unfolded protein response (UPR) and the molecular link to cell survival and death mechanisms.

View Article and Find Full Text PDF

Peroxisomal membrane proteins (PMPs) traffic to peroxisomes by two mechanisms: direct insertion from the cytosol into the peroxisomal membrane and indirect trafficking to peroxisomes via the endoplasmic reticulum (ER). In mammals and yeast, several PMPs traffic via the ER in a Pex3- and Pex19-dependent manner. In Komagataella phaffii (formerly called Pichia pastoris) specifically, the indirect traffic of Pex2, but not of Pex11 or Pex17, depends on Pex3, but all PMPs tested for indirect trafficking require Pex19.

View Article and Find Full Text PDF

Tumor cells rely on a continued exogenous nutrient supply in order to maintain a high proliferative activity. Although a strong dependence of some tumor types on exogenous arginine sources has been reported, the mechanisms of arginine sensing by tumor cells and the impact of changes in arginine availability on translation and cell cycle regulation are not fully understood. The results presented herein state that human colorectal carcinoma cells rapidly exhaust the internal arginine sources in the absence of exogenous arginine and repress global translation by activation of the GCN2-mediated pathway and inhibition of mTOR signaling.

View Article and Find Full Text PDF

The transcriptional regulator HAP4, induced by respiratory substrates, is involved in the balance between fermentation and respiration in S. cerevisiae. We identified putative orthologues of the Hap4 protein in all ascomycetes, based only on a conserved sixteen amino acid-long motif.

View Article and Find Full Text PDF

Tumor cells often exhibit specific metabolic defects due to the aberrations in oncogene-dependent regulatory and/or signaling pathways that distinguish them from normal cells. Among others, many malignant cells are deficient in biosynthesis of certain amino acids and concomitantly exhibit elevated sensitivity to deprivation of these amino acids. Although the underlying causes of such metabolic changes are still not fully understood, this feature of malignant cells is exploited in metabolic enzymotherapies based on single amino acid, e.

View Article and Find Full Text PDF

Two methods of multicopy integrant selection in the methylotrophic yeast Hansenula polymorpha based on the use of heterologous yeast auxotrophic genes have been used to isolate effective overproducers of hepatitis B surface antigen (HBsAg). One selection marker was described earlier for this yeast, the Saccharomyces cerevisiae URA3 gene, whereas the second selection marker was developed by us, the Pichia pastoris ADE1 gene with shortened native promoter. Sequential use of both selection markers produced stable transformants containing up to 30 integration cassettes with HBsAg gene.

View Article and Find Full Text PDF

Autophagy-related (Atg) pathways deliver cytosol and organelles to the vacuole in double-membrane vesicles called autophagosomes, which are formed at the phagophore assembly site (PAS), where most of the core Atg proteins assemble. Atg28 is a component of the core autophagic machinery partially required for all Atg pathways in Pichia pastoris. This coiled-coil protein interacts with Atg17 and is essential for micropexophagy.

View Article and Find Full Text PDF

Arginine deprivation achieved by means of recombinant arginine-degrading enzymes is currently being developed as a novel anticancer enzymotherapy. In this study, we showed that arginine deprivation in vitro profoundly and selectively sensitized human cancer cells of different organ origin to low doses of canavanine, an arginine analogue of plant origin. In sensitive cancer cells arginine starvation led to the activation of caspase-9, caspase-3 and caspase-7, cleavage of reparation enzyme, polyADP ribosyl polymerase, and DNA fragmentation, which are the typical hallmarks of intrinsic apoptosis realized by the mitochondrial pathway.

View Article and Find Full Text PDF

Single amino acid Arg (arginine) deprivation is currently considered as a therapeutic approach to treat certain types of tumours; the molecular mechanisms that underlie tumour cell sensitivity or resistance to Arg restriction are still little understood. Here, we address the question of whether endogenous levels of key Arg metabolic enzymes [catabolic: arginases, ARG1 (arginase type 1) and ARG2 (arginase type 2), and anabolic: OTC (ornithine transcarbamylase) and ASS (argininosuccinate synthetase)] affect cellular responses to arginine deprivation in vitro. Human epithelial cancer cells of different organs of origin exhibiting variable sensitivity to Arg deprivation provided the experimental models.

View Article and Find Full Text PDF

Methods for colony assay of peroxisomal oxidases in yeasts provide a convenient and fast approach for monitoring peroxisome status. They have been used in several laboratories for the isolation of yeast mutants deficient in selective autophagic peroxisome degradation (pexophagy), catabolite repression of peroxisomal enzymes or mutants deficient in oxidases themselves. In this chapter, protocols for monitoring peroxisomal alcohol oxidase and amine oxidase directly in yeast colonies and examples of their application for mutant isolation are described.

View Article and Find Full Text PDF

Improvement of xylose fermentation is of great importance to the fuel ethanol industry. The nonconventional thermotolerant yeast Hansenula polymorpha naturally ferments xylose to ethanol at high temperatures (48-50 degrees C). Introduction of a mutation that impairs ethanol reutilization in H.

View Article and Find Full Text PDF

We identified in the methylotrophic yeast Hansenula polymorpha (syn. Pichia angusta) a novel hexose transporter homologue gene, HXS1 (hexose sensor), involved in transcriptional regulation in response to hexoses, and a regular hexose carrier gene, HXT1 (hexose transporter). The Hxs1 protein exhibits the highest degree of primary sequence similarity to the Saccharomyces cerevisiae transporter-like glucose sensors, Snf3 and Rgt2.

View Article and Find Full Text PDF

In the methanol-utilizing yeast Hansenula polymorpha, glucose and ethanol trigger the repression of peroxisomal enzymes at the transcriptional level, and rapid and selective degradation of methanol-induced peroxisomes by means of a process termed pexophagy. In this report we demonstrate that deficiency in the putative H. polymorpha homologues of transcriptional repressors Mig1 (HpMig1 and HpMig2), as well as HpTup1, partially and differentially affects the repression of peroxisomal alcohol oxidase by sugars and ethanol.

View Article and Find Full Text PDF

In the present study, we modified xylose uptake properties of a recombinant xylose-utilizing yeast Saccharomyces cerevisiae by expression of heterologous and homologous permease-encoding genes. In a mutant yeast strain with the main seven hexose transporter genes deleted, and engineered for xylose utilization, we screened an expression cDNA library of the filamentous fungus Trichoderma reesei (Hypocrea jecorina) for enhanced growth on xylose plates. One cDNA clone with significant homology to fungal sugar transporters was obtained, but when the clone was retransformed into the host, it did not support significant growth on xylose.

View Article and Find Full Text PDF

The most commonly used expression platform for production of recombinant proteins in the methylotrophic yeast Hansenula polymorpha relies on the strong and strictly regulated promoter from the gene encoding peroxisomal enzyme alcohol (or methanol) oxidase (P(MOX)). Expression from P(MOX) is induced by methanol and is partially derepressed in glycerol or xylose medium, whereas in the presence of hexoses, disaccharides or ethanol, it is repressed. The need for methanol for maximal induction of gene expression in large-scale fermentation is a significant drawback, as this compound is toxic, flammable, supports a slow growth rate and requires extensive aeration.

View Article and Find Full Text PDF

In methylotrophic yeasts, peroxisomes are required for methanol utilization, but are dispensable for growth on most other carbon sources. Upon adaptation of cells grown on methanol to glucose or ethanol, redundant peroxisomes are selectively and quickly shipped to, and degraded in, vacuoles via a process termed pexophagy. We identified a novel gene named ATG28 (autophagy-related genes) involved in pexophagy in the yeast Pichia pastoris.

View Article and Find Full Text PDF

Pichia pastoris and Hansenula polymorpha are methylotrophic yeasts capable of utilizing methanol, as a sole source of carbon and energy. Growth of these yeast species on methanol requires the synthesis of cytosolic and peroxisomal enzymes combined with the proliferation of peroxisomes. Peroxisomes are also abundantly present in the alkane-utilizing yeast Yarrowia lipolytica upon growth of cells on oleic acid.

View Article and Find Full Text PDF

It is known for many years that iron represses synthesis of riboflavin (RF) and most of RF-synthesizing enzymes in several yeast species, known as flavinogenic yeasts. However, the mechanism of such repression is not known. We have found that iron represses transcription of RIB1 and RIB7 genes coding for the first and the last enzymes of RF biosynthesis in the model flavinogenic organism Pichia guilliermondii.

View Article and Find Full Text PDF

Peroxisome biogenesis and synthesis of peroxisomal enzymes in the methylotrophic yeast Hansenula polymorpha are under the strict control of glucose repression. We identified an H. polymorpha glucose catabolite repression gene (HpGCR1) that encodes a hexose transporter homologue.

View Article and Find Full Text PDF

Two interacting AAA ATPases, Pex1p and Pex6p, are indispensable for peroxisome biogenesis in different organisms. Mutations affecting corresponding genes are the most common cause of the peroxisome biogenesis disorders in humans. By UV mutagenesis of the Hansenula polymorpha pex6 mutant, deficient in peroxisome biogenesis, we isolated a conditional cold-sensitive strain with restored ability to grow in methanol medium at 37 degrees C but not at 28 degrees C.

View Article and Find Full Text PDF

Mutants of the methanol-utilizing yeast Pichia pastoris and the alkane-utilizing yeast Yarrowia lipolytica defective in the orthologue of UGT51 (encoding sterol glucosyltransferase) were isolated and compared. These mutants do not contain the specific ergosterol derivate, ergosterol glucoside. We observed that the P.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnvd6ug0dpio496ahfi58105ld4996s3t): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once