Publications by authors named "Oleh I Demianchuk"

Consumption of high-calorie diets leads to excessive accumulation of storage lipids in adipose tissue. Metabolic changes occur not only in adipose tissue but in other tissues, too, such as liver, heart, muscle, and brain. This study aimed to explore the effects of high-fat high-fructose diet (HFFD) alone and in the combination with alpha-ketoglutarate (AKG), a well-known cellular metabolite, on energy metabolism in the skeletal muscle of C57BL/6J mice.

View Article and Find Full Text PDF

Background: Diets rich in fats and/or carbohydrates are used to study obesity and related metabolic complications. We studied the effects of a high fat high fructose diet (HFFD) on intermediary metabolism and the development of oxidative stress in mouse liver and tested the ability of alpha-ketoglutarate to prevent HFFD-induced changes.

Methods: Male mice were fed a standard diet (10% kcal fat) or HFFD (45% kcal fat, 15% kcal fructose) with or without addition of 1% alpha-ketoglutarate (AKG) in drinking water for 8 weeks.

View Article and Find Full Text PDF

In this study, we have investigated specific and combined effects of essential amino acid, l-arginine, and ethanol (EtOH), a natural component of food, on a range of physiological and biochemical parameters of the flies. Rearing of during two weeks on the food supplemented with 50 mM l-arginine decreased activities of catalase, glucose-6-phosphate dehydrogenase, and glutathione--transferase in males by about 28%, 60%, and 60%, respectively. At the same time, arginine-fed males had 40% higher levels of lipid peroxides and arginine-fed females had 36% low-molecular mass thiol levels as compared to the control.

View Article and Find Full Text PDF

Normal brain aging is accompanied by intensification of free radical processes and compromised bioenergetics. Caloric restriction is expected to counteract these changes but the underlying protective mechanisms remain poorly understood. The present work aimed to investigate the intensity of oxidative stress and energy metabolism in the cerebral cortex comparing mice of different ages as well as comparing mice given one of two regimens of food availability: ad libitum versus every-other-day fasting (EODF).

View Article and Find Full Text PDF

The transcription factor Nrf2 and its negative regulator Keap1 play important roles in the maintenance of redox homeostasis in animal cells. Nrf2 activates defenses against oxidative stress and xenobiotics. Homologs of Nrf2 and Keap1 are present in Drosophila melanogaster (CncC and dKeap1, respectively).

View Article and Find Full Text PDF