Phase imaging microscopy with incoherent object illumination is convenient and affordable for biomedical research and clinics since it provides easy integration with a variety of bright-field optical microscopes. We report the design of a new hyperspectral imaging system based on a combination of a spatial light modulator (SLM) and an acousto-optic tunable filter (AOTF) for phase imaging microscopy. Contrast of phase-only objects originates from matched spectral and spatial filtering performed by the SLM and the AOTF located in Fourier-conjugate optical planes in the back-end of the optical system.
View Article and Find Full Text PDFOptimization of a wide-angle paratellurite acousto-optic tunable filter (AOTF) is performed for applications in laser beam shaping systems. The AOTF configuration with annular transfer function is analyzed. It is demonstrated that the optimal AOTF design for single-frequency operation as a narrow-band spatial frequency filter is obtained at acoustic propagation angle of 5.
View Article and Find Full Text PDFA new protocol of hyperspectral data acquisition with an acousto-optical tunable filter is proposed and tested experimentally. Correction for the illumination source spectrum and regular spectral sensitivity factors is embedded in the data acquisition routine. The protocol is based on the adaptive electronic setting of the filter transmission passband inversely proportional to the power spectrum of the light source.
View Article and Find Full Text PDFWe discuss the theoretical and experimental investigation of acousto-optic dispersive tunable filters, based on quasi-collinear geometry of light-sound interaction in a tellurium dioxide single crystal. The geometry uses the effect of strong acoustic anisotropy in the paratellurite as well as peculiarities of acoustic wave reflections at the free boundary of the crystal. A mathematical concept for determination of optical, electrical, and constructional parameters of the filters is developed.
View Article and Find Full Text PDF