One of the main challenges in miniaturizing optoacoustic technology is the low sensitivity of sub-millimeter piezoelectric ultrasound transducers, which is often insufficient for detecting weak optoacoustic signals. Optical detectors of ultrasound can achieve significantly higher sensitivities than their piezoelectric counterparts for a given sensing area but generally lack acoustic focusing, which is essential in many minimally invasive imaging configurations. In this work, we develop a focused sub-millimeter ultrasound detector composed of a silicon-photonics optical resonator and a micro-machined acoustic lens.
View Article and Find Full Text PDFUltrasound detection via optical resonators can achieve high levels of miniaturization and sensitivity as compared to piezoelectric detectors, but its scale-up from a single detector to an array is highly challenging. While the use of wideband sources may enable parallel interrogation of multiple resonators, it comes at the cost of reduction in the optical power, and ultimately in sensitivity, per channel. In this work we have developed a new interferometric approach to overcome this signal loss by using high-power bursts that are synchronized with the time window in which ultrasound detection is performed.
View Article and Find Full Text PDFCoherence-restored pulse interferometry (CRPI) is a recently developed method for optical detection of ultrasound that achieves shot-noise-limited sensitivity and high dynamic range. In principle, the wideband source employed in CRPI may enable the interrogation of multiple detectors by using wavelength multiplexing. However, the noise-reduction scheme in CRPI has not been shown to be compatible with wideband operation.
View Article and Find Full Text PDF