Vitamin D transporter (DBP) is a multifunctional protein. Site-specific deglycosylation results in its conversion to group-specific component protein-derived macrophage activating factor (GcMAF), which is capable of activating macrophages. It has been shown that depending on precursor conversion conditions, the resulting GcMAF activates mouse peritoneal macrophages towards synthesis of either pro- (IL-1β, TNF-α-M1 phenotype) or anti-inflammatory (TGF-β, IL-10-M2 phenotype) cytokines.
View Article and Find Full Text PDFThe SARS-CoV-2 pandemic has underscored the necessity for functional transgenic animal models for testing. Mouse lines with overexpression of the human receptor ACE2 serve as the common animal model to study COVID-19 infection. Overexpression of ACE2 under a strong ubiquitous promoter facilitates convenient and sensitive testing of COVID-19 pathology.
View Article and Find Full Text PDFIntroduction: Restoring immune tolerance is a promising area of therapy for autoimmune diseases. One method that helps restore immunological tolerance is the approach using tolerogenic dendritic cells (tolDCs). In our study, we analyzed the effectiveness of using dendritic cells transfected with DNA constructs encoding IL-10, type II collagen, and CCR9 to induce immune tolerance in an experimental model of arthritis.
View Article and Find Full Text PDFIn this study, we investigated the features of co-infection with SARS-CoV-2 and the enterovirus vaccine strain LEV8 of coxsackievirus A7 or enterovirus A71 for Vero E6 cells and Syrian hamsters. The investigation of co-infection with SARS-CoV-2 and LEV-8 or EV-A71 in the cell model showed that a competitive inhibitory effect for these viruses was especially significant against SARS-CoV-2. Pre-infection with enteroviruses in the animals caused more than a 100-fold decrease in the levels of SARS-CoV-2 virus replication in the respiratory tract and more rapid clearance of infectious SARS-CoV-2 from the lower respiratory tract.
View Article and Find Full Text PDFGroup-specific component macrophage-activating factor (GcMAF) is the vitamin D-binding protein (DBP) deglycosylated at Thr. The protein is believed to exhibit a wide range of therapeutic properties associated with the activation of macrophagal immunity. An original method for GcMAF production, DBP conversion to GcMAF, and the analysis of the activating potency of GcMAF was developed in this study.
View Article and Find Full Text PDFNow more than ever researchers provide more and more evidence that it is necessary to develop an ecologically friendly approach to pest control. This is reflected in a sharp increase in the value of the biological insecticide market in recent decades. In our study, we found a virus strain belonging to the genus (Reoviridae); the strain was isolated from , possessing attractive features as a candidate for mass production of biological agents for lepidopteran-pest control.
View Article and Find Full Text PDFIt is well-established that double-stranded RNA (dsRNA) exhibits noticeable radioprotective and radiotherapeutic effects. The experiments conducted in this study directly demonstrated that dsRNA was delivered into the cell in its native form and that it induced hematopoietic progenitor proliferation. The 68 bp synthetic dsRNA labeled with 6-carboxyfluorescein (FAM) was internalized into mouse hematopoietic progenitors, c-Kit+ (a marker of long-term hematopoietic stem cells) cells and CD34+ (a marker of short-term hematopoietic stem cells and multipotent progenitors) cells.
View Article and Find Full Text PDFBackground: Since most of the modern human population has no anti-smallpox immunity, it is extremely important to develop and implement effective drugs for the treatment of smallpox and other orthopoxvirus infections. The objective of this study is to determine the main characteristics of the chemical substance NIOCH-14 and its safety and bioavailability in the body of laboratory animals.
Methods: The safety of NIOCH-14 upon single- or multiple-dose intragastric administration was assessed according to its effect on the main hematological and pathomorphological parameters of laboratory mice and rats.
Int J Mol Sci
December 2022
An ability of poorly differentiated cells of different genesis, including tumor stem-like cells (TSCs), to internalize extracellular double-stranded DNA (dsDNA) fragments was revealed in our studies. Using the models of Krebs-2 murine ascites carcinoma and EBV-induced human B-cell lymphoma culture, we demonstrated that dsDNA internalization into the cell consists of several mechanistically distinct phases. The primary contact with cell membrane factors is determined by electrostatic interactions.
View Article and Find Full Text PDFPharmaceutics
October 2022
Vaccination against SARS-CoV-2 and other viral infections requires safe, effective, and inexpensive vaccines that can be rapidly developed. DNA vaccines are candidates that meet these criteria, but one of their drawbacks is their relatively weak immunogenicity. Electroporation (EP) is an effective way to enhance the immunogenicity of DNA vaccines, but because of the different configurations of the devices that are used for EP, it is necessary to carefully select the conditions of the procedure, including characteristics such as voltage, current strength, number of pulses, etc.
View Article and Find Full Text PDFFront Genet
September 2022
Stem-like tumor cells of ascites carcinoma Krebs-2 and Epstein-Barr virus-induced B-lymphoma were shown to possess the innate capability of binding and internalizing the TAMRA-labeled double-stranded DNA (dsDNA) probe. The process of binding and internalizing is rather complicated and composed of the following successive stages: 1) initiating electrostatic interaction and contact of a negatively charged dsDNA molecule with a positively charged molecule(s) on the surface of a stem-like tumor cell; 2) binding of the dsDNA probe to a tumor stem cell surface protein(s) the formation of a strong chemical/molecular bond; and 3) the very internalization of dsDNA into the cell. Binding of DNA to cell surface proteins is determined by the presence of heparin/polyanion-binding sites within the protein structure, which can be competitively blocked by heparin and/or dextran sulfate, wherein heparin blocks only the binding, while dextran sulfate abrogates both binding and internalization.
View Article and Find Full Text PDFThe main problem related to the studies focusing on group-specific component protein-derived macrophage-activating factor (GcMAF) is the lack of clarity about changes occurring in different types of macrophages and related changes in their properties under the effect of GcMAF in various clinical conditions. We analyzed the antitumor therapeutic properties of GcMAF in a Lewis carcinoma model in two clinical conditions: untreated tumor lesion and tumor resorption after exposure to Karanahan therapy. GcMAF is formed during site-specific deglycosylation of vitamin D3 binding protein (DBP).
View Article and Find Full Text PDFA new technology based on the chronometric administration of cyclophosphamide and complex composite double-stranded DNA-based compound, which is scheduled in strict dependence on interstrand crosslinks repair timing, and named "Karanahan", has been developed. Being applied, this technology results in the eradication of tumor-initiating stem cells and full-scale apoptosis of committed tumor cells. In the present study, the efficacy of this novel approach has been estimated in the model of Lewis carcinoma.
View Article and Find Full Text PDFThe novel coronavirus disease COVID-19 has become one of the most socially significant infections. One of the main models for COVID-19 pathogenesis study and anti-COVID-19 drug development is laboratory animals sensitive to the virus. Herein, we report SARS-CoV-2 infection in novel transgenic mice conditionally expressing human ACE2 (hACE2), with a focus on viral distribution after intranasal inoculation.
View Article and Find Full Text PDFObjective: Glioma is a highly invasive tumor, frequently disposed in essential areas of the brain, which makes its surgical excision extremely difficult; meanwhile adjuvant therapy remains quite ineffective.
Methods: In the current report, a new therapeutic approach in curing malignant neoplasms has been performed on the U87 human glioblastoma model. This approach, termed "Karanahan", is aimed at the eradication of cancer stem cells (CSCs), which were recently shown to be capable of internalizing fragments of extracellular double-stranded DNA.
The Purpose Of The Article: Protection from ionizing radiation is the most important component in the curing malignant neoplasms, servicing atomic reactors, and resolving the situations associated with uncontrolled radioactive pollutions. In this regard, discovering new effective radioprotectors as well as novel principles of protecting living organisms from high-dose radiation is the most important factor, determining the new approaches in medical and technical usage of radiation.
Materials And Methods: Experimental animals were irradiated on the γ-emitter (Cs) with a dose of 9.
Background/aim: We previously have described the "3+1" tumors cure approach consisting of individual time schedule of cyclophosphamide and dsDNA preparation administrations. The aim of the study was to adapt the "3+1" approach based on eradication of cancer stem cells to the model of murine ascitic cyclophosphamide-resistant lymphosarcoma (RLS).
Materials And Methods: Adaptation of the "3+1" approach includes the identification of the timing to disrupt the tumorigenic potential of a certain tumor.
Background/aim: Oncolytic adenoviruses are promising therapeutic agents against both the bulk of tumor cells and cancer stem cells. The present study intended to test the oncolytic capability of adenovirus serotype 6 (Ad6), which has a lower seroprevalence and hepatotoxicity relatively to adenovirus 5 (Ad5), against the glioblastoma and its cancer stem cells.
Materials And Methods: Oncolytic efficacy of Ad6 was compared to widespread Ad5 both in vitro and in vivo, using the U87 and U251 human glioblastoma cell lines and subcutaneously transplanted U87 cells in SCID mice, respectively.
The present study demonstrates that monocyte-derived dendritic cells (moDCs) produced in vitro using a GM-CSF and IFN-α differentiation protocol encompass a rare (∼5%) subpopulation of cells showing classical dendritic cell morphology and capable of natural internalization of extracellular self-DNA. We established that DEFB, HMGB1, LL-37 and RAGE antigens, which mediate the process of DNA internalization, are expressed on the surface of moDCs similar to plasmacytoid dendritic cells. However, in constrast to the latter subpopulation, these cells do not produce interleukin (IL)-37.
View Article and Find Full Text PDFCancer Cell Int
May 2019
Background: We have characterized the human cell line arised from the Epstein-Barr virus (EBV) positive multiple myeloma aspirate subjected to the long-term cultivation. This cell line has acquired the ability to form free-floating spheres and to produce a xenograft upon transplantation into NOD/SCID mice.
Methods: Cells from both in vitro culture and developed xenografts were investigated with a number of analytical approaches, including pathomorphological analysis, FISH analysis, and analysis of the surface antigens and of the VDJ locus rearrangement.
Electron-microscopic analysis of the ultrastructure of the Krebs-2 carcinoma ascites cells in the first 90 min immediately after their exposure to fragmented double-stranded DNA has been performed. Morphological attributes of the treated cancer cells indicate the induction in these cells of destructive processes of presumably apoptotic type. The predominance of dystrophic-destructive changes in cells after the addition of DNA is supposed to be a consequence of the disturbance in metabolic processes caused by the experimental action.
View Article and Find Full Text PDFA functional analysis of 167 genes overexpressed in Krebs-2 tumor initiating cells was performed. In the first part of the study, the genes were analyzed for their belonging to one or more of the three groups, which represent the three major phenotypic manifestation of malignancy of cancer cells, namely (1) proliferative self-sufficiency, (2) invasive growth and metastasis, and (3) multiple drug resistance. 96 genes out of 167 were identified as possible contributors to at least one of these fundamental properties.
View Article and Find Full Text PDFKrebs-2 solid carcinoma was cured using a new "3+1" strategy for eradication of Krebs-2 tumor-initiating stem cells. This strategy was based on synchronization of these cells in a treatment-sensitive phase of the cell cycle. The synchronization mechanism, subsequent destruction of Krebs-2 tumor-initiating stem cells, and cure of mice from a solid graft were found to depend on the temporal profile of the interstrand cross-link repair cycle.
View Article and Find Full Text PDF