Sci Total Environ
January 2025
Copper (Cu) and zinc (Zn) are two trace metals that exhibit both limiting and toxic effects on aquatic microorganisms. However, in contrast to good knowledge of these metal interactions with individual microbial cultures, the biofilm, complex natural consortium of microorganisms, remains poorly understood with respect to its control on Cu and Zn in the aquatic environments. Towards constraining the magnitude and mechanisms of Cu and Zn isotope fractionation in the presence of phototrophic biofilms composed of different proportion of diatoms, green algae and cyanobacteria, we studied long-term growth in a rotating annular bioreactor and quantified the uptake of metals and their isotope fractionation at environmentally-relevant Cu and Zn concentrations.
View Article and Find Full Text PDFSci Total Environ
December 2024
Carbon emission from Arctic rivers constitutes a positive feedback between the climate warming and C cycle. However, in case of rivers with extensive floodplains, the impacts of temporary water bodies and secondary channels on CO exchange with atmosphere, compared to the main stem and tributaries, remain strongly understudied. In order to quantify the relative role of various water bodies of the Arctic river basin in the C cycle, the hydrochemical variables and greenhouse gases GHG concentrations and fluxes were measured within the floodplain of the largest Arctic River, Ob, in its low reaches located in the permafrost zone.
View Article and Find Full Text PDFParticulate suspended matter (PSM) of rivers is a significant factor for carbon, nutrient, and trace metal transfer from land to ocean. Towards better understanding the role that PSM exerts on major and trace elements in riverine systems, here we report the results of an experimental study which utilizes a two-fold approach to assess interaction between PSM and riverine solutes. First, we measured element leaching (via desorption and dissolution in distilled water, simulating snow melt) from PSM of the largest Siberian river, the Ob River.
View Article and Find Full Text PDFIn order to foresee the impact of permafrost thaw on CO emissions by high-latitude rivers, in-situ measurements across a permafrost and climate/vegetation gradient, coupled with assessment of possible physico-chemical and landscape controlling factors are necessary. Here we chose 34 catchments of variable stream order (1 to 9) and watershed size (1 to >10 km) located across a permafrost and biome gradient in the Western Siberian Lowland (WSL), from the permafrost-free southern taiga to the continuous permafrost zone of tundra. Across the south-north transect, maximal CO emissions (2.
View Article and Find Full Text PDFThermokarst (thaw) lakes of permafrost peatlands are among the most important sentinels of climate change and sizable contributors of greenhouse gas emissions (GHG) in high latitudes. These lakes are humic, often acidic and exhibit fast growing/drainage depending on the local environmental and permafrost thaw. In contrast to good knowledge of the thermokarst lake water hydrochemistry and GHG fluxes, the sediments pore waters remain virtually unknown, despite the fact that these are hot spots of biogeochemical processes including GHG generation.
View Article and Find Full Text PDFShallow thermokarst lakes are important sources of greenhouse gases (GHGs) such as methane (CH ) and carbon dioxide (CO ) resulting from continuous permafrost thawing due to global warming. Concentrations of GHGs dissolved in water typically increase with decreasing lake size due to coastal abrasion and organic matter delivery. We hypothesized that (i) CH oxidation depends on the natural oxygenation gradient in the lake water and sediments and increases with lake size because of stronger wind-induced water mixing; (ii) CO production increases with decreasing lake size, following the dissolved organic matter gradient; and (iii) both processes are more intensive in the upper than deeper sediments due to the in situ gradients of oxygen (O ) and bioavailable carbon.
View Article and Find Full Text PDFPlant phytoliths, which represent the main pool of silica (Si) in the form of hydrous Si oxide, are capable of providing valuable information on different aspect of environmental issues including paleo-environmental reconstruction and agricultural sustainability. Phytoliths may have different chemical composition, which, in turn, affects their preservation in soils ad impacts terrestrial cycle of the occluded elements including micro-nutrients and environmental toxicants. Yet, in contrast to sizable work devoted to phytoliths formation, dissolution and physico-chemical properties, the mechanisms that control total (major and trace) elemental composition and the impact that various elements exert on phytolith reactivity and preservation in soils remains poorly known.
View Article and Find Full Text PDFDespite the importance of structural control on metal stable isotope fractionation in inorganic and abiotic systems, the link between metal structural changes and related isotopic fractionation during reactions with organic surfaces and live cells remains poorly established. We conducted reversible adsorption of Fe(II) and Fe(III) on the surface of exopolysaccharide (EPS)-rich and EPS-poor , and we allowed Fe intracellular uptake by growing cells. We analyzed the Fe isotopic composition of the remaining fluid and cell biomass, and compared the isotopic fractionation during adsorption and assimilation reaction with relative changes in Fe structural status between aqueous solution and bacterial cells, based on available and newly collected X-ray absorption spectroscopy (XAS) observations.
View Article and Find Full Text PDFHigh altitude (alpine) lakes are efficient sentinels of environmental processes, including local pollution and long-range atmospheric transfer, because these lakes are highly vulnerable to ongoing climate changes and increasing anthropogenic pressure. Towards improving the knowledge of trace element geochemistry in the water column of alpine lakes, we assessed 64 physico-chemical parameters, including macro- and micronutrients, major and trace element concentrations in the water column of 18 lakes in the Pyrenees, located along the border between France and Spain. Lake depth, morphology, retention time and watershed rock lithology did not exhibit sizable impact on major and trace element concentrations in the water column.
View Article and Find Full Text PDFHigh-altitude Pyrenean lakes are ecosystems far from local pollution sources, and thus they are particularly sensitive to the atmospheric deposition of metals and metalloids. This study aims to quantify the effect of human activity in 18 lakes located in both side of the France-Spain frontier. Sediment cores were collected in summer 2013, sampled at a 1cm resolution and the concentration of 24 elements was measured by ICP-MS.
View Article and Find Full Text PDFWithin a global warming trend, invasive cyanobacteria, abundant in tropical and temperate regions, can migrate northward and colonize thermokarst lakes in permafrost-affected territories. For a better understanding of the cyanobacterial proliferation mechanism in those lakes, we performed laboratory growth of typical invasive cyanobacteria, , onto various organic-rich solutions representative of permafrost peatlands. Aqueous leachates of lichen, moss and peat were the most favorable substrates for massive growth.
View Article and Find Full Text PDFDespite the importance of small and medium size rivers of Siberian boreal zone in greenhouse gases (GHG) emission, major knowledge gaps exist regarding its temporal variability and controlling mechanisms. Here we sampled 11 pristine rivers of the southern taiga biome (western Siberia Lowland, WSL), ranging in watershed area from 0.8 to 119,000 km, to reveal temporal pattern and examine main environmental controllers of GHG emissions from the river water surfaces.
View Article and Find Full Text PDFExtensive studies have been performed on wildfire impact on terrestrial and aquatic ecosystems in the taiga biome, however consequences of wildfires in the tundra biome remain poorly understood. In such a biome, permafrost peatlands occupy a sizable territory in the Northern Hemisphere and present an extensive and highly vulnerable storage of organic carbon. Here we used an experimental approach to model the impact of ash produced from burning of main tundra organic constituents (i.
View Article and Find Full Text PDFPhytoliths are microscopic structures made of amorphous opal (opal-A), an amorphous hydrated silica, dispersed within plant tissues and persisting after the decay of the plant. Silicon is known to alleviate metal toxicity in plants, but the role of phytoliths in metal sequestration and detoxification is unclear. Dry ashing, the most common protocol for phytolith extraction, was previously shown to lead to sequestration of metals by the phytoliths; however, the mechanisms of this process remained elusive.
View Article and Find Full Text PDFTo better understand freezing - thawing cycles operating in peat soils of permafrost landscapes, we experimentally modelled bi-directional freezing and thawing of peat collected from a discontinuous permafrost zone in western Siberia. We measured translocation of microorganisms and changes in porewater chemistry (pH, UV absorbance, dissolved organic carbon (DOC), and major and trace element concentrations) after thawing and two-way freezing of the three sections of 90-cm-long peat core. We demonstrate that bi-directional freezing and thawing of a peat core is capable of strongly modifying the vertical pattern of bacteria, DOC, nutrients, and trace element concentrations.
View Article and Find Full Text PDFThe biomineralization of CO , in the form of carbonate minerals, is considered as one of the efficient solutions of atmospheric CO removal, allowing stable and sustainable storage of this greenhouse gas. Cyanobacteria are among the most powerful microorganisms capable of precipitating carbonate minerals, both in the present and in the past. In the modern environments, high Si concentration during geoengineering biomineralization could occur due to dissolution of Mg-bearing primary silicates such as olivine.
View Article and Find Full Text PDFThe fate of organic carbon (OC), nutrients and metals accumulated in thawing permafrost ice is at the forefront of environmental studies in the Arctic. In contrast to a fairly good understanding of the chemical nature of dissolved OC (DOC) and metals in surface Arctic waters, the speciation and colloidal status of solutes accommodated in the dispersed ground ice remain virtually unknown. Here we used a size fractionation procedure (centrifugal ultrafiltration) to quantify the proportion of colloidal (3 kDa to 0.
View Article and Find Full Text PDFShallow thaw (thermokarst) lakes abundant in regions of permafrost-affected peatlands represent important sources of carbon dioxide and methane emission to the atmosphere, however the quantitative parameters of phytoplankton communities which control the C cycle in these lakes remain poorly known. This is especially true considering the roles of permafrost, hydrochemical composition of lakes, lake sizes and season as major governing factors on phytoplankton abundance and biodiversity. In this work, we quantified phytoplankton characteristics of 27 thermokarst lakes (sizes ranging from 115 m2 to 1.
View Article and Find Full Text PDFPhototrophic biofilms are exposed to multiple stressors that can affect them both directly and indirectly. By modifying either the composition of the community or the physiology of the microorganisms, press stressors may indirectly impact the ability of the biofilms to cope with disturbances. Extracellular polymeric substances (EPS) produced by the biofilm are known to play an important role in its resilience to various stresses.
View Article and Find Full Text PDFDespite the importance of soil and surface waters freezing in permafrost landscapes, the behaviour of dissolved organic carbon (DOC), nutrients and metals during periodic freeze-thaw cycles (FTC) remains poorly known. The on-going climate warming is likely to increase the frequency of FTC in continental aquatic settings, which could modify the chemical composition of waters. In this study, we conducted 9 repetitive cycles of overnight freezing (-20 °C) and 5 h thawing (4 °C) in the laboratory using representative 0.
View Article and Find Full Text PDFPermafrost thaw in continental lowlands produces large number of thermokarst (thaw) lakes, which act as a major regulator of carbon (C) storage in sediments and C emission in the atmosphere. Here we studied thaw lakes of the NE European permafrost peatlands - shallow water bodies located within frozen peat bogs and receiving the majority of their water input from lateral (surface) runoff. We also conducted mesocosm experiments via interacting lake waters with frozen peat and dominant ground vegetation - lichen and moss.
View Article and Find Full Text PDFPeatlands cover 3% of the land, occur in 169 countries, and have-by sequestering 600 Gt of carbon-cooled the global climate by 0.6 °C. After a general review about peatlands worldwide, this paper describes the importance of the Great Vasyugan Mire and presents suggestions about its protection and future research.
View Article and Find Full Text PDF