Publications by authors named "Oleg Polomarov"

A new model describing the Weibel instability of a relativistic electron beam propagating through a resistive plasma is developed. For finite-temperature beams, a new class of negative-energy magnetosound waves is identified, whose growth due to collisional dissipation destabilizes the beam-plasma system even for high beam temperatures. We perform 2D and 3D particle-in-cell simulations and show that in 3D geometry the Weibel instability persists even for collisionless background plasma.

View Article and Find Full Text PDF

The theoretical framework predicting the long-term evolution, structure, and coalescence energetics of current filaments during the Weibel instability of an electron beam in a collisionless plasma is developed. We emphasize the nonlinear stage of the instability, during which the beam density of filaments increases to the background ion density, and the ambient plasma electrons are fully expelled from the filaments. Our analytic and numerical results demonstrate that the beam filaments can carry super-Alfvénic currents and develop hollow-current density profiles.

View Article and Find Full Text PDF

In low-pressure discharges, where the electron mean free path is larger or comparable with the discharge length, the electron dynamics is essentially nonlocal. Moreover, the electron energy distribution function (EEDF) deviates considerably from a Maxwellian. Therefore, an accurate kinetic description of the low-pressure discharges requires knowledge of the nonlocal conductivity operator and calculation of the non-Maxwellian EEDF.

View Article and Find Full Text PDF