Publications by authors named "Oleg Osadchii"

Background: The aim of this simulation was to examine the utility of a novel ECG-based index of cardiac action potential (AP) triangulation, the Tstart-to-Tpeak (TsTp) interval-to-JTstart (JTs) interval ratio, for assessment of changes in AP profile imposed through variations in the duration of the plateau phase and the phase 3 repolarization.

Methods: ECGs were simulated using a realistic rabbit model based on experimental data. The AP plateau was measured at APD30, and the phase 3 was assessed as APD90-to-APD30 difference (AP durations at 90 % and 30 % repolarization, respectively).

View Article and Find Full Text PDF

New Findings: What is the central question of this study? Can the triangular appearance of ventricular action potential, indicating proarrhythmic profile of antiarrhythmic agent, be approximated by specific changes on an electrocardiogram (ECG)? What are the main finding and its importance? The triangulation of the ventricular action potential seen when antiarrhythmic drugs induce a greater lengthening of the late repolarization compared to the initial repolarization in epicardium is closely approximated by a greater prolongation of the T wave upslope relative to the interval between the J point and the start of the T wave (the JT interval) on the ECG. These findings may improve the power of ECG assessments in predicting the drug-induced arrhythmia resulting from slowed phase 3 repolarization.

Abstract: Antiarrhythmic drugs prescribed to treat atrial fibrillation can occasionally precipitate ventricular tachyarrhythmia through a prominent slowing of the phase 3 repolarization.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? Can antiarrhythmic drug effects on repolarization, conduction time and excitation wavelength in premature beats be determined by prior cardiac activation frequency? What is the main finding and its importance? In premature beats induced after a series of cardiac activations at a slow rate, antiarrhythmics prolong repolarization but evoke little or no conduction delay, thus increasing the excitation wavelength, which indicates an antiarrhythmic effect. Fast prior activation rate attenuates prolongation of repolarization, while amplifying the conduction delay induced by drugs, which translates into the reduced excitation wavelength, indicating proarrhythmia. These findings suggest that a sudden increase in heart rate can shape adverse pharmacological profiles in patients with ventricular ectopy.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? Are modifications in the restitution of ventricular action potential duration induced by antiarrhythmic drugs the same when assessed with premature extrastimulus application at variable coupling intervals (the standard stimulation protocol) and with steady state pacing at variable rates (the dynamic stimulation protocol)? What is the main finding and its importance? With class I and class III antiarrhythmics, the effects on electrical restitution determined with the standard stimulation protocol dissociate from those obtained during dynamic pacing. These findings indicate a limited value of the electrical restitution assessments based on extrasystolic stimulations alone, as performed in the clinical studies, in estimating the outcomes of antiarrhythmic drug therapies.

Abstract: A steep slope of the ventricular action potential duration (APD) to diastolic interval (DI) relationships (the electrical restitution) can precipitate tachyarrhythmia, whereas a flattened slope is antiarrhythmic.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? Is the slowed conduction upon premature ventricular activations during clinical electrophysiological testing attributable to the prolonged activation latency, or increased impulse propagation time, or both? What is the main finding and its importance? Prolonged activation latency at the stimulation site is the critical determinant of conduction slowing and associated changes in the ventricular response intervals in premature beats initiated during phase 3 repolarization in perfused guinea-pig heart. These relations are likely to have an effect on arrhythmia induction and termination independently of the presence of ventricular conduction defects or the proximity of the stimulation site to the re-entrant circuit.

Abstract: During cardiac electrophysiological testing, slowed conduction upon premature ventricular activation can limit the delivery of the closely coupled impulses from the stimulation site to the region of tachycardia origin.

View Article and Find Full Text PDF

Objectives: In normal conditions, sudden heart rate acceleration provokes a rapid reduction in ventricular action potential duration (APD). The protracted APD rate adaptation favors early afterdepolarizations and precipitates arrhythmia. Nevertheless, it is uncertain as to whether the rate-dependent changes of ventricular repolarization can be adversely modified by arrhythmogenic drugs (quinidine and procainamide) and hypokalemia, in comparison to the agents with safe therapeutic profile, such as lidocaine.

View Article and Find Full Text PDF

Non-uniform shortening of the action potential duration (APD90) in different myocardial regions upon heart rate acceleration can set abnormal repolarization gradients and promote arrhythmia. This study examined whether spatial heterogeneities in APD90 restitution can be amplified by drugs with clinically proved proarrhythmic potential (dofetilide, quinidine, procainamide, and flecainide) and, if so, whether these effects can translate to the appropriate changes of the ECG metrics of ventricular repolarization, such as JT intervals. In isolated, perfused guinea-pig heart preparations, monophasic action potentials and volume-conducted ECG were recorded at progressively increased pacing rates.

View Article and Find Full Text PDF

Introduction: Drug-induced arrhythmia remains a matter of serious clinical concern, partly due to low prognostic value of currently available arrhythmic biomarkers.

Methods: This study examined whether arrhythmogenic risks can be predicted through assessments of the rate adaptation of QT interval, ventricular effective refractory period (ERP), or the QT/QRS ratio, in perfused guinea-pig hearts.

Results: When the maximum restitution slope was taken as a metric of proarrhythmia, neither QT interval nor ERP measurements at progressively increased pacing rates were found to fully discriminate arrhythmogenic drugs (dofetilide, quinidine, flecainide, and procainamide) from those recognized as safe antiarrhythmics (lidocaine and mexiletine).

View Article and Find Full Text PDF

Na+ channel blockers flecainide and quinidine can increase propensity to ventricular tachyarrhythmia, whereas lidocaine and mexiletine are recognized as safe antiarrhythmics. Clinically, ventricular fibrillation is often precipitated by transient tachycardia that reduces action potential duration, suggesting that a critical shortening of the excitation wavelength (EW) may contribute to the arrhythmic substrate. This study examined whether different INa blockers can produce contrasting effects on the rate adaptation of the EW, which would explain the difference in their safety profile.

View Article and Find Full Text PDF

Objectives: Flecainide is class Ic antiarrhythmic agent that was found to increase the risk of sudden cardiac death. Arrhythmic responses to flecainide could be precipitated by exercise, suggesting a role played by inappropriate rate adaptation of ventricular repolarization. This study therefore examined flecainide effect on adaptation of the QT interval and ventricular action potential duration (APD) to abrupt reductions of the cardiac cycle length.

View Article and Find Full Text PDF

There is increasing evidence in support of an important role played by neurotensin (NT), a tridecapeptide originally found in bovine hypothalamus, in regulation of cardiovascular system. Elevated systemic levels of NT may contribute to pathogenesis of acute circulatory disoders, and predict the risk for cardiovascular morbidity and mortality in population-based studies. Within cardiovascular system, NT-containing neural fibers are found in close contact with atrial and ventricular cardiac myocytes, cardiac conduction system, intracardiac ganglia, as well as coronary vessels in humans and various animal species.

View Article and Find Full Text PDF

Objectives: In the clinical setting, patients with slower resting heart rate are less prone to cardiovascular death compared with those with elevated heart rate. However, electrophysiological adaptations associated with reduced cardiac rhythm have not been thoroughly explored. In this study, relationships between intrinsic heart rate and arrhythmic susceptibility were examined by assessments of action potential duration (APD) rate adaptation and inducibility of repolarization alternans in sinoatrial node (SAN)-driven and atrioventricular (AV)-blocked guinea-pig hearts perfused with Langendorff apparatus.

View Article and Find Full Text PDF

Normal hearts exhibit a positive time difference between the end of ventricular contraction and the end of QT interval, which is referred to as the electromechanical (EM) window. Drug-induced prolongation of repolarization may lead to the negative EM window, which was proposed to be a novel proarrhythmic marker. This study examined whether abnormal changes in the EM window may account for arrhythmogenic effects produced by hypokalemia.

View Article and Find Full Text PDF

Antiarrhythmic agents which belong to class Ia (quinidine) and Ic (flecainide) reportedly increase propensity to ventricular tachyarrhythmia, whereas class Ib agents (lidocaine and mexiletine) are recognized as safe antiarrhythmics. Clinically, tachyarrhythmia is often initiated by a premature ectopic beat, which increases spatial nonuniformities in ventricular conduction and repolarization thus facilitating reentry. This study examined if electrical derangements evoked by premature excitation may be accentuated by flecainide and quinidine, but unchanged by lidocaine and mexiletine, which would explain the difference in their safety profile.

View Article and Find Full Text PDF

Procainamide is class Ia Na(+) channel blocker that may prolong ventricular repolarization secondary to inhibition of IK r , the rapid component of the delayed rectifier K(+) current. In contrast to selective IN a blockers such as lidocaine, procainamide was shown to produce arrhythmogenic effects in the clinical setting. This study examined whether pro-arrhythmic responses to procainamide may be accounted for by drug-induced repolarization abnormalities including impaired electrical restitution kinetics, spatial gradients in action potential duration (APD), and activation-to-repolarization coupling.

View Article and Find Full Text PDF

Quinidine is a class Ia Na(+) channel blocker that prolongs cardiac repolarization owing to the inhibition of I(Kr), the rapid component of the delayed rectifier current. Although quinidine may induce proarrhythmia, the contributing mechanisms remain incompletely understood. This study examined whether quinidine may set proarrhythmic substrate by inducing spatiotemporal abnormalities in repolarization and refractoriness.

View Article and Find Full Text PDF

Flecainide is nonselective Na(+) channel blocker which may also inhibit I(Kr), the rapid component of the delayed rectifier. This study was designed to explore if proarrhythmic responses to flecainide noted in cardiac patients may be partly attributed to abnormal changes in repolarization and refractoriness. Monophasic action potential duration (APD) and effective refractory periods (ERP) were assessed at distinct epicardial and endocardial sites along with volume-conducted ECG recordings in isolated perfused guinea-pig heart preparations.

View Article and Find Full Text PDF

Purpose: Dofetilide is class III antiarrhythmic agent which prolongs cardiac action potential duration because of selective inhibition of I (Kr), the rapid component of the delayed rectifier K(+) current. Although clinical studies reported on proarrhythmic risk associated with dofetilide treatment, the contributing electrophysiological mechanisms remain poorly understood. This study was designed to determine if dofetilide-induced proarrhythmia may be attributed to abnormalities in ventricular repolarization and refractoriness.

View Article and Find Full Text PDF

Clinically, class Ib antiarrhythmic agents (selective I(Na) blockers) are considered to be safe drugs, whereas class Ia and Ic agents (non-selective blockers of both I(Na) and I(Kr), the rapid component of the delayed rectifier) may evoke proarrhythmia. I hypothesized that this difference is accounted for by differential drug effects on transmural dispersion of refractoriness, in the presence of the reciprocal distribution profile of I(Na) and I(Kr) across ventricular wall, as determined in previous studies. Specifically, less epicardial than endocardial I(Na) reserve would likely contribute to a greater prolongation of the effective refractory period (ERP) at epicardium by the I(Na) blocker, thereby reducing epicardial-to-endocardial ERP dispersion, with resulting antiarrhythmic effect.

View Article and Find Full Text PDF

The steep slope of the rate adaptation of ventricular action potential duration (APD) is thought to indicate profibrillatory tendency. In cardiac patients, APD restitution is commonly assessed by extrasystolic (S(1)-S(2)) stimulations rather than dynamic pacing, because the latter may provoke myocardial ischaemia. In this study, ventricular APD and effective refractory period (ERP) were measured in perfused guinea-pig hearts to determine whether S(1)-S(2) stimulations and dynamic pacing may have similar value in APD restitution assessments aimed to predict arrhythmic risk.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how a substance called isoproterenol affects heart signals in guinea pigs.
  • They found that even though the heart didn't show any bad changes, it responded weaker to signals that usually make it pump stronger.
  • This suggests that too much stimulation over time might change how the heart works without actually changing its structure.
View Article and Find Full Text PDF

Widely used murine models of adrenergic-induced cardiomyopathy offer little insight into electrical derangements seen in human heart failure owing to profound differences in the characteristics of ventricular repolarization in mice and rats compared with humans. We therefore sought to determine whether sustained adrenergic activation may produce a clinically relevant heart failure phenotype in the guinea-pig, an animal species whose ventricular action potential shape and restitution properties resemble those determined in humans. Isoprenaline (ISO), a β-adrenoceptor agonist, was infused at variable dosage and duration using either subcutaneously implanted osmotic minipumps or daily injections, in an attempt to establish the relevant treatment protocol.

View Article and Find Full Text PDF

We sought to explore the distribution pattern of Na(+) channels across ventricular wall, and to determine its functional correlates, in the guinea pig heart. Voltage-dependent Na(+) channel (Na(v)) protein expression levels were measured in transmural samples of ventricular tissue by Western blotting. Isolated, perfused heart preparations were used to record monophasic action potentials and volume-conducted ECG, and to measure effective refractory periods (ERPs) and pacing thresholds, in order to assess excitability, electrical restitution kinetics, and susceptibility to stimulation-evoked tachyarrhythmias at epicardial and endocardial stimulation sites.

View Article and Find Full Text PDF

Hypokalemia is a common biochemical finding in cardiac patients and may represent a side effect of diuretic therapy or result from endogenous activation of renin-angiotensin system and high adrenergic tone. Hypokalemia is independent risk factor contributing to reduced survival of cardiac patients and increased incidence of arrhythmic death. Animal studies demonstrate that hypokalemia-induced arrhythmogenicity is attributed to prolonged ventricular repolarization, slowed conduction, and abnormal pacemaker activity.

View Article and Find Full Text PDF