Publications by authors named "Oleg Naimark"

The paper presents the results of fatigue-testing ultrafine-grained and coarse-grained Ti-45 wt.% Nb alloy samples under very high cycle fatigue (gigacycle regime), with the stress ratio R = -1. The ultrafine-grained (UFG) structure in the investigated alloy was formed by the two-stage SPD method, which included multidirectional forging (abc-forging) and multipass rolling in grooved rollers, with further recrystallization annealing.

View Article and Find Full Text PDF

Laser interference microscopy (LIM) is a promising label-free method for single-cell research applicable to cell viability assessment in the studies of mammalian cells. This paper describes the development of a sensitive and reproducible method for assessing cell viability using LIM. The method, based on associated signal processing techniques, has been developed as a result of real-time investigation in phase thickness fluctuations of viable and non-viable MCF-7 cells, reflecting the presence and absence of their metabolic activity.

View Article and Find Full Text PDF

An experimental methodology was developed for estimating a very high cycle fatigue (VHCF) life of the aluminum alloy AMG-6 subjected to preliminary deformation. The analysis of fatigue damage staging is based on the measurement of elastic modulus decrement according to "in situ" data of nonlinear dynamics of free-end specimen vibrations at the VHCF test. The correlation of fatigue damage staging and fracture surface morphology was studied to establish the scaling properties and kinetic equations for damage localization, "fish-eye" nucleation, and transition to the Paris crack kinetics.

View Article and Find Full Text PDF

The "magic" word complexity evokes a multitude of meanings that obscure its real sense. Here we try and generate a bottom-up reconstruction of the deep sense of complexity by looking at the convergence of different features shared by complex systems. We specifically focus on complexity in biology but stressing the similarities with analogous features encountered in inanimate and artefactual systems in order to track an integrative path toward a new "mainstream" of science overcoming the actual fragmentation of scientific culture.

View Article and Find Full Text PDF

Adhesion of industrially important bacteria to solid carriers through the example of actinobacterium Rhodococcus ruber IEGM 342 adhered to polystyrene was studied using real-time methods, such as infrared (IR) thermography and thermometry with platinum resistance (PR) detectors. Dynamics of heat rate and heat production was determined at early (within first 80 min) stages of rhodococcal cell adhesion. Heat rate was maximal (1.

View Article and Find Full Text PDF

There is growing evidence that the microenvironment surrounding a tumor plays a special role in cancer development and cancer therapeutic resistance. Tumors arise from the dysregulation and alteration of both the malignant cells and their environment. By providing tumor-repressing signals, the microenvironment can impose and sustain normal tissue architecture.

View Article and Find Full Text PDF

Breast cancer is the most common type of cancer among women and despite recent advances in the medical field, there are still some inherent limitations in the currently used screening techniques. The radiological interpretation of screening X-ray mammograms often leads to over-diagnosis and, as a consequence, to unnecessary traumatic and painful biopsies. Here we propose a computer-aided multifractal analysis of dynamic infrared (IR) imaging as an efficient method for identifying women with risk of breast cancer.

View Article and Find Full Text PDF

Immobilization of microorganisms on/in insoluble carriers is widely used to stabilize functional activity of microbial cells in industrial biotechnology. We immobilized Rhodococcus ruber, an important hydrocarbon degrader, on biosurfactant-coated sawdust. A biosurfactant produced by R.

View Article and Find Full Text PDF