Holoprosencephaly (HPE) is defined as the incomplete separation of the two cerebral hemispheres. The pathology of HPE is variable and, based on the severity of the defect, HPE is divided into alobar, semilobar, and lobar. Using a novel hypomorphic Six3 allele, we demonstrate in mice that variability in Six3 dosage results in different HPE phenotypes.
View Article and Find Full Text PDFRetinal degeneration causes vision impairment and blindness in humans. If one day we are to harness the potential of stem cell-based cell replacement therapies to treat these conditions, it is imperative that we better understand normal retina development. Currently, the genes and mechanisms that regulate the specification of the neuroretina during vertebrate eye development remain unknown.
View Article and Find Full Text PDFThe dentate gyrus has an important role in learning and memory, and adult neurogenesis in the subgranular zone of the dentate gyrus may play a role in the acquisition of new memories. The homeobox gene Prox1 is expressed in the dentate gyrus during embryonic development and adult neurogenesis. Here we show that Prox1 is necessary for the maturation of granule cells in the dentate gyrus during development and for the maintenance of intermediate progenitors during adult neurogenesis.
View Article and Find Full Text PDFThe homeobox gene Prox1 is crucial for mammalian lymphatic vascular development. In the absence of Prox1, lymphatic endothelial cells (LECs) are not specified. The maintenance of LEC identity also requires the constant expression of Prox1.
View Article and Find Full Text PDFHoloprosencephaly (HPE), the most common forebrain malformation, is characterized by an incomplete separation of the cerebral hemispheres. Mutations in the homeobox gene SIX3 account for 1.3% of all cases of human HPE.
View Article and Find Full Text PDFThe homeobox gene Six3 represses Wnt1 transcription. It is also required in the anterior neural plate for the development of the mammalian rostral forebrain. We have now determined that at the 15- to 17-somite stage, the prospective diencephalon is the most-anterior structure in the Six3-null brain, and Wnt1 expression is anteriorly expanded.
View Article and Find Full Text PDFThe origin of the mammalian lymphatic vasculature has been debated for more than 100 years. Whether lymphatic endothelial cells have a single or dual, venous or mesenchymal origin remains controversial. To resolve this debate, we performed Cre/loxP-based lineage-tracing studies using mouse strains expressing Cre recombinase under the control of the Tie2, Runx1, or Prox1 promoter elements.
View Article and Find Full Text PDFGene Expr Patterns
January 2007
Recently, sequence analyses have identified a large number of opposite strand transcripts in the vertebrate genome. Although the transcripts appear to be spliced and polyadenylated, many of them are predicted to represent noncoding RNAs. High levels of noncoding transcripts of the Six3 Opposite Strand (Six3OS) were recently identified in the embryonic and postnatal retina of the mouse.
View Article and Find Full Text PDFThe homeobox gene Six3 regulates forebrain development. Here we show that Six3 is also crucial for lens formation. Conditional deletion of mouse Six3 in the presumptive lens ectoderm (PLE) disrupted lens formation.
View Article and Find Full Text PDFDuring kidney development and in response to inductive signals, the metanephric mesenchyme aggregates, becomes polarized, and generates much of the epithelia of the nephron. As such, the metanephric mesenchyme is a renal progenitor cell population that must be replenished as epithelial derivatives are continuously generated. The molecular mechanisms that maintain the undifferentiated state of the metanephric mesenchymal precursor cells have not yet been identified.
View Article and Find Full Text PDFFragile X syndrome (FXS) is almost always caused by silencing of the FMR1 gene. The defects observed in FXS indicate that the normal FMR1 gene has a range of functions and plays a particularly prominent role during development. However, the mechanisms regulating FMR1 expression in vivo are not known.
View Article and Find Full Text PDFIn vertebrate embryos, formation of anterior neural structures requires suppression of Wnt signals emanating from the paraxial mesoderm and midbrain territory. In Six3(-/-) mice, the prosencephalon was severely truncated, and the expression of Wnt1 was rostrally expanded, a finding that indicates that the mutant head was posteriorized. Ectopic expression of Six3 in chick and fish embryos, together with the use of in vivo and in vitro DNA-binding assays, allowed us to determine that Six3 is a direct negative regulator of Wnt1 expression.
View Article and Find Full Text PDFRecent findings suggest that Six3, a member of the evolutionarily conserved So/Six homeodomain family, plays an important role in vertebrate visual system development. However, little is known about the molecular mechanisms by which this function is accomplished. Although several members of the So/Six gene family interact with members of the eyes absent (Eya) gene family and function as transcriptional activators, Six3 does not interact with any known member of the Eya family.
View Article and Find Full Text PDF