Publications by authors named "Oleg Kurnasov"

Unlabelled: Long interspersed nuclear element-1 (LINE-1 or L1), the most abundant family of autonomous retrotransposons occupying over 17% of human DNA, is epigenetically silenced in normal tissues by the mechanisms involving p53 but is frequently derepressed in cancer, suggesting that L1-encoded proteins may act as tumor-associated antigens recognized by the immune system. In this study, we established an immunoassay to detect circulating autoantibodies against L1 proteins in human blood. Using this assay in >2,800 individuals with or without cancer, we observed significantly higher IgG titers against L1-encoded ORF1p and ORF2p in patients with lung, pancreatic, ovarian, esophageal, and liver cancers than in healthy individuals.

View Article and Find Full Text PDF

Understanding the dynamics and mechanisms of acquired drug resistance across major classes of antibiotics and bacterial pathogens is of critical importance for the optimization of current anti-infective therapies and the development of novel ones. To systematically address this challenge, we developed a workflow combining experimental evolution in a morbidostat continuous culturing device with deep genomic sequencing of population samples collected in time series. This approach was applied to the experimental evolution of six populations of BW25113 towards acquiring resistance to triclosan (TCS), an antibacterial agent in various consumer products.

View Article and Find Full Text PDF

The Toll-like receptor 5 (TLR5) agonist entolimod, a derivative of Salmonella flagellin, has therapeutic potential for several indications including radioprotection and cancer immunotherapy. However, in Phase 1 human studies, entolimod induced a rapid neutralizing immune response, presumably due to immune memory from prior exposure to flagellated enterobacteria. To enable multi-dose applications, we used structure-guided reengineering to develop a next-generation, substantially deimmunized entolimod variant, GP532.

View Article and Find Full Text PDF

Studying the phenomenon of cellular senescence has been hindered by the lack of senescence-specific markers. As such, detection of proteins informally associated with senescence accompanies the use of senescence-associated β-galactosidase as a collection of semiselective markers to monitor the presence of senescent cells. To identify novel biomarkers of senescence, we immunized BALB/c mice with senescent mouse lung fibroblasts and screened for antibodies that recognized senescence-associated cell-surface antigens by FACS analysis and a newly developed cell-based ELISA.

View Article and Find Full Text PDF

The unique steps in the synthesis of an unusual osmolyte in hyperthermophiles, di-myo-inositol-1,1'-phosphate (DIP), involve the production of CDP-inositol and its condensation with an inositol-1-phosphate molecule to form phosphorylated DIP. While many organisms fuse both activities into a single enzyme, the two are separate in Thermotoga maritima. The crystal structure of the T.

View Article and Find Full Text PDF

Sugar phosphorylation is an indispensable committed step in a large variety of sugar catabolic pathways, which are major suppliers of carbon and energy in heterotrophic species. Specialized sugar kinases that are indispensable for most of these pathways can be utilized as signature enzymes for the reconstruction of carbohydrate utilization machinery from microbial genomic and metagenomic data. Sugar kinases occur in several structurally distinct families with various partially overlapping as well as yet unknown substrate specificities that often cannot be accurately assigned by homology-based techniques.

View Article and Find Full Text PDF

Toll-like receptor 5 (TLR5) binding to bacterial flagellin activates signaling through the transcription factor NF-κB and triggers an innate immune response to the invading pathogen. To elucidate the structural basis and mechanistic implications of TLR5-flagellin recognition, we determined the crystal structure of zebrafish TLR5 (as a variable lymphocyte receptor hybrid protein) in complex with the D1/D2/D3 fragment of Salmonella flagellin, FliC, at 2.47 angstrom resolution.

View Article and Find Full Text PDF

The emergence of multidrug-resistant pathogens necessitates the search for new antibiotics acting on previously unexplored targets. Nicotinate mononucleotide adenylyltransferase of the NadD family, an essential enzyme of NAD biosynthesis in most bacteria, was selected as a target for structure-based inhibitor development. Using iterative in silico and in vitro screens, we identified small molecule compounds that efficiently inhibited target enzymes from Escherichia coli (ecNadD) and Bacillus anthracis (baNadD) but had no effect on functionally equivalent human enzymes.

View Article and Find Full Text PDF

The toxicity of ionizing radiation is associated with massive apoptosis in radiosensitive organs. Here, we investigate whether a drug that activates a signaling mechanism used by tumor cells to suppress apoptosis can protect healthy cells from the harmful effects of radiation. We studied CBLB502, a polypeptide drug derived from Salmonella flagellin that binds to Toll-like receptor 5 (TLR5) and activates nuclear factor-kappaB signaling.

View Article and Find Full Text PDF

Di-myo-inositol 1,1'-phosphate (DIP) is a major osmoprotecting metabolite in a number of hyperthermophilic species of archaea and bacteria. Although the DIP biosynthesis pathway was previously proposed, genes encoding only two of the four required enzymes, inositol-1-phosphate synthase and inositol monophosphatase, were identified. In this study we used a comparative genomic analysis to predict two additional genes of this pathway (termed dipA and dipB) that remained missing.

View Article and Find Full Text PDF

Biosynthesis of NAD(P) cofactors is of special importance for cyanobacteria due to their role in photosynthesis and respiration. Despite significant progress in understanding NAD(P) biosynthetic machinery in some model organisms, relatively little is known about its implementation in cyanobacteria. We addressed this problem by a combination of comparative genome analysis with verification experiments in the model system of Synechocystis sp.

View Article and Find Full Text PDF

Previous studies have demonstrated two different biosynthetic pathways to quinolinate, the universal de novo precursor to the pyridine ring of NAD. In prokaryotes, quinolinate is formed from aspartate and dihydroxyacetone phosphate; in eukaryotes, it is formed from tryptophan. It has been generally believed that the tryptophan to quinolinic acid biosynthetic pathway is unique to eukaryotes; however, this paper describes the use of comparative genome analysis to identify likely candidates for all five genes involved in the tryptophan to quinolinic acid pathway in several bacteria.

View Article and Find Full Text PDF

While a variety of chemical transformations related to the aerobic degradation of L-tryptophan (kynurenine pathway), and most of the genes and corresponding enzymes involved therein have been predominantly characterized in eukaryotes, relatively little was known about this pathway in bacteria. Using genome comparative analysis techniques we have predicted the existence of the three-step pathway of aerobic L-tryptophan degradation to anthranilate (anthranilate pathway) in several bacteria. Based on the chromosomal gene clustering analysis, we have identified a previously unknown gene encoding for kynurenine formamidase (EC 3.

View Article and Find Full Text PDF

Pyridine dinucleotides (NAD and NADP) are ubiquitous cofactors involved in hundreds of redox reactions essential for the energy transduction and metabolism in all living cells. In addition, NAD also serves as a substrate for ADP-ribosylation of a number of nuclear proteins, for silent information regulator 2 (Sir2)-like histone deacetylase that is involved in gene silencing regulation, and for cyclic ADP ribose (cADPR)-dependent Ca(2+) signaling. Pyridine nucleotide adenylyltransferase (PNAT) is an indispensable central enzyme in the NAD biosynthesis pathways catalyzing the condensation of pyridine mononucleotide (NMN or NaMN) with the AMP moiety of ATP to form NAD (or NaAD).

View Article and Find Full Text PDF

NAD is an indispensable redox cofactor in all organisms. Most of the genes required for NAD biosynthesis in various species are known. Ribosylnicotinamide kinase (RNK) was among the few unknown (missing) genes involved with NAD salvage and recycling pathways.

View Article and Find Full Text PDF

Novel drug targets are required in order to design new defenses against antibiotic-resistant pathogens. Comparative genomics provides new opportunities for finding optimal targets among previously unexplored cellular functions, based on an understanding of related biological processes in bacterial pathogens and their hosts. We describe an integrated approach to identification and prioritization of broad-spectrum drug targets.

View Article and Find Full Text PDF

Haemophilus influenzae NadR protein (hiNadR) has been shown to be a bifunctional enzyme possessing both NMN adenylytransferase (NMNAT; EC ) and ribosylnicotinamide kinase (RNK; EC ) activities. Its function is essential for the growth and survival of H. influenzae and thus may present a new highly specific anti-infectious drug target.

View Article and Find Full Text PDF

Nicotinamide/Nicotinate mononucleotide (NMN/NaMN) adenylyltransferase is an indispensable enzyme in both de novo biosynthesis and salvage of NAD+ and NADP+. In prokaryotes, it is absolutely required for cell survival, thus representing an attractive target for the development of new broad-spectrum antibacteria inhibitors. The crystal structures of E.

View Article and Find Full Text PDF

Nicotinamide/nicotinate mononucleotide (NMN/ NaMN)adenylyltransferase (NMNAT) is an indispensable enzyme in the biosynthesis of NAD(+) and NADP(+). Human NMNAT displays unique dual substrate specificity toward both NMN and NaMN, thus flexible in participating in both de novo and salvage pathways of NAD synthesis. Human NMNAT also catalyzes the rate-limiting step of the metabolic conversion of the anticancer agent tiazofurin to its active form tiazofurin adenine dinucleotide (TAD).

View Article and Find Full Text PDF