Acid-sensing ion channels (ASICs) play a key role in the perception and response to extracellular acidification changes. These proton-gated cation channels are critical for neuronal functions, like learning and memory, fear, mechanosensation and internal adjustments like synaptic plasticity. Moreover, they play a key role in neuronal degeneration, ischemic neuronal injury, seizure termination, pain-sensing, etc.
View Article and Find Full Text PDFNumerous studies reported an association between GABA R subunit genes and epilepsy, eating disorders, autism spectrum disorders, neurodevelopmental disorders, and bipolar disorders. This study was aimed to find some potential positive allosteric modulators and was performed by combining the in silico approach with further in vitro evaluation of its real activity. We started from the GABA R-diazepam complexes and assembled a lipid embedded protein ensemble to refine it via molecular dynamics (MD) simulation.
View Article and Find Full Text PDFTissue acidification causes sustained activation of primary nociceptors, which causes pain. In mammals, acid-sensing ion channels (ASICs) are the primary acid sensors; however, Na/H exchangers (NHEs) and TRPV1 receptors also contribute to tissue acidification sensing. ASICs, NHEs, and TRPV1 receptors are found to be expressed in nociceptive nerve fibers.
View Article and Find Full Text PDFThe author recalls several particularly memorable events during his scientific career that led to the discovery of acid-sensing ion channels and ionotropic purinergic receptors. The readers learn of the events of 1975 when the first intracellular perfusion of the neuronal soma has been achieved- the event that led to the precise measurement of the calcium currents through the neuronal plasma membrane. Next, 1980 brings us to the functional discovery of the neuronal proton receptors found in mammalian sensory neurons.
View Article and Find Full Text PDFIt is well established that temperature affects the functioning of almost all biomolecules and, consequently, all cellular functions. Here, we show how temperature variations within a physiological range affect primary afferents' spontaneous activity in response to chemical nociceptive stimulation. An mouse hind limb skin-saphenous nerve preparation was used to study the temperature dependence of single C-mechanoheat (C-MH) fibers' spontaneous activity.
View Article and Find Full Text PDFAdenosine triphosphate (ATP) is well-known as a universal source of energy in living cells. Less known is that this molecule has a variety of important signaling functions: it activates a variety of specific metabotropic (P2Y) and ionotropic (P2X) receptors in neuronal and non-neuronal cell membranes. So, a wide variety of signaling functions well fits the ubiquitous presence of ATP in the tissues.
View Article and Find Full Text PDFAcidosis is a hallmark of ischemic stroke and a promising neuroprotective target for preventing neuronal injury. Previously, genetic manipulations showed that blockade of acid-sensing ion channel 1a (ASIC1a)-mediated acidotoxicity could dramatically alleviate the volume of brain infarct and restore neurological function after cerebral ischemia. However, few pharmacological candidates have been identified to exhibit efficacy on ischemic stroke through inhibition of ASIC1a.
View Article and Find Full Text PDFCholinergic modulation of hippocampal network function is implicated in multiple behavioral and cognitive states. Activation of nicotinic and muscarinic acetylcholine receptors affects neuronal excitability, synaptic transmission and rhythmic oscillations in the hippocampus. In this work, we studied the ability of the cholinergic system to sustain hippocampal epileptiform activity independently from glutamate and GABA transmission.
View Article and Find Full Text PDFAcid-sensing ion channels (ASICs) are Na+-permeable ion channels activated by protons and predominantly expressed in the nervous system. ASICs act as pH sensors leading to neuronal excitation. At least eight different ASIC subunits (including ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, ASIC4, ASIC5) are encoded by five genes (ASIC1-ASIC5).
View Article and Find Full Text PDFNeonatal hyperbilirubinemia is a common clinical condition that can lead to brain encephalopathy, particularly when concurrent with acidosis due to infection, ischemia, and hypoxia. The prevailing view is that acidosis increases the permeability of the blood-brain barrier to bilirubin and exacerbates its neurotoxicity. In this study, we found that the concentration of the cell death marker, lactate dehydrogenase (LDH) in cerebrospinal fluid (CSF), is elevated in infants with both hyperbilirubinemia and acidosis and showed stronger correlation with the severity of acidosis rather than increased bilirubin concentration.
View Article and Find Full Text PDFKey Points: Central regulation of energy homeostasis and stress are believed to be reciprocally regulated, i.e. excessive food intake suppresses, while prolonged hunger exacerbates, stress responses in vivo.
View Article and Find Full Text PDFChronic pain is a serious debilitating disease for which effective treatment is still lacking. Acid-sensing ion channel 1a (ASIC1a) has been implicated in nociceptive processing at both peripheral and spinal neurons. However, whether ASIC1a also contributes to pain perception at the supraspinal level remains elusive.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) is a unique structure that controls substances exchange between the systemic circulation and the brain. Disruption of its integrity contributes to the development and progression of a variety of brain disorders including stroke, epilepsy and neurodegenerative diseases. It was shown that intracerebral thrombin level substantially increases following status epilepticus (SE).
View Article and Find Full Text PDFRegulation of the formation and rewiring of neural circuits by neuropeptides may require coordinated production of these signaling molecules and their receptors that may be established at the transcriptional level. Here, we address this hypothesis by comparing absolute expression levels of opioid peptides with their receptors, the largest neuropeptide family, and by characterizing coexpression (transcriptionally coordinated) patterns of these genes. We demonstrated that expression patterns of opioid genes highly correlate within and across functionally and anatomically different areas.
View Article and Find Full Text PDFProtease-activated receptor 1 (PAR1) is an important contributor to the pathogenesis of a variety of brain disorders associated with a risk of epilepsy development. Using the lithium-pilocarpine model of temporal lobe epilepsy (TLE), we recently showed that inhibition of this receptor during the first ten days after pilocarpine-induced status epilepticus (SE) results in substantial anti-epileptogenic and neuroprotective effects. As PAR1 is expressed in the central nervous system regions of importance for processing emotional reactions, including amygdala and hippocampus, and TLE is frequently associated with a chronic alteration of the functions of these regions, we tested the hypothesis that PAR1 inhibition could modulate emotionally driven behavioral responses of rats experiencing SE.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
February 2017
Background: Neuropeptide precursors are traditionally viewed as proteins giving rise to small neuropeptide molecules. Prodynorphin (PDYN) is the precursor protein to dynorphins, endogenous ligands for the κ-opioid receptor. Alternative mRNA splicing of neuropeptide genes may regulate cell- and tissue-specific neuropeptide expression and produce novel protein isoforms.
View Article and Find Full Text PDFRapid acidification occurring during synaptic vesicle release can activate acid-sensing ion channels (ASICs) both on pre- and postsynaptic neurons. In the latter case, a fraction of postsynaptic current would be mediated by cation-selective acid-sensing ion channels. Additionally, in both cases, activation of acid-sensing ion channels could modulate synaptic strength by affecting transmitter release and/or sensitivity of postsynaptic receptors.
View Article and Find Full Text PDFThe endogenous opioid peptides dynorphins and enkephalins may be involved in brain-area specific synaptic adaptations relevant for different stages of an addiction cycle. We compared the levels of prodynorphin (PDYN) and proenkephalin (PENK) mRNAs (by qRT-PCR), and dynorphins and enkephalins (by radioimmunoassay) in the caudate nucleus and putamen between alcoholics and control subjects. We also evaluated whether PDYN promoter variant rs1997794 associated with alcoholism affects PDYN expression.
View Article and Find Full Text PDFAcid sensing ion channels 1a (ASIC1a) are of crucial importance in numerous physiological and pathological processes in the brain. Here we demonstrate that novel 2-oxo-2H-chromene-3-carboxamidine derivative 5b, designed with molecular modeling approach, inhibits ASIC1a currents with an apparent IC50 of 27 nM when measured at pH 6.7.
View Article and Find Full Text PDFHere, we describe a molecular switch associated with opioid receptors-linked signalling cascades that provides a dual opioid control over P2X3 purinoceptor in sensory neurones. Leu-enkephalin inhibited P2X3-mediated currents with IC50 ~10 nM in ~25% of small nociceptive rat dorsal root ganglion (DRG) neurones. In contrast, in neurones pretreated with pertussis toxin leu-enkephalin produced stable and significant increase of P2X3 currents.
View Article and Find Full Text PDFThe history of ASICs began in 1980 with unexpected observation. The concept of highly selective Na(+) current gated by specific receptors for protons was not easily accepted. It took 16 years to get these receptor/channels cloned and start a new stage in their investigation.
View Article and Find Full Text PDFPersistent tetrodotoxin-sensitive sodium current (INaP) plays an important role in cellular and neuronal network excitability in physiological conditions and under different pathological circumstances. However, developmental changes in INaP properties remain largely unclear. In the present study using whole cell patch clamp technique we evaluated INaP properties in CA1 hippocampal pyramidal neurons isolated from young (postnatal day (P) 12-16) and adult (P60-75) rats.
View Article and Find Full Text PDF