Publications by authors named "Oleg Kovalevskiy"

Two years on from the initial release of AlphaFold, we have seen its widespread adoption as a structure prediction tool. Here, we discuss some of the latest work based on AlphaFold, with a particular focus on its use within the structural biology community. This encompasses use cases like speeding up structure determination itself, enabling new computational studies, and building new tools and workflows.

View Article and Find Full Text PDF

The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces.

View Article and Find Full Text PDF

Nowadays, progress in the determination of three-dimensional macromolecular structures from diffraction images is achieved partly at the cost of increasing data volumes. This is due to the deployment of modern high-speed, high-resolution detectors, the increased complexity and variety of crystallographic software, the use of extensive databases and high-performance computing. This limits what can be accomplished with personal, offline, computing equipment in terms of both productivity and maintainability.

View Article and Find Full Text PDF

Recent advances in instrumentation and software have resulted in cryo-EM rapidly becoming the method of choice for structural biologists, especially for those studying the three-dimensional structures of very large macromolecular complexes. In this contribution, the tools available for macromolecular structure refinement into cryo-EM reconstructions that are available via CCP-EM are reviewed, specifically focusing on REFMAC5 and related tools. Whilst originally designed with a view to refinement against X-ray diffraction data, some of these tools have been able to be repurposed for cryo-EM owing to the same principles being applicable to refinement against cryo-EM maps.

View Article and Find Full Text PDF

Refinement is a process that involves bringing into agreement the structural model, available prior knowledge and experimental data. To achieve this, the refinement procedure optimizes a posterior conditional probability distribution of model parameters, including atomic coordinates, atomic displacement parameters (B factors), scale factors, parameters of the solvent model and twin fractions in the case of twinned crystals, given observed data such as observed amplitudes or intensities of structure factors. A library of chemical restraints is typically used to ensure consistency between the model and the prior knowledge of stereochemistry.

View Article and Find Full Text PDF

This review describes some of the problems encountered during low-resolution refinement and map calculation. Refinement is considered as an application of Bayes' theorem, allowing combination of information from various sources including crystallographic experimental data and prior chemical and structural knowledge. The sources of prior knowledge relevant to macromolecules include basic chemical information such as bonds and angles, structural information from reference models of known homologs, knowledge about secondary structures, hydrogen bonding patterns, and similarity of non-crystallographically related copies of a molecule.

View Article and Find Full Text PDF

Since the ratio of the number of observations to adjustable parameters is small at low resolution, it is necessary to use complementary information for the analysis of such data. ProSMART is a program that can generate restraints for macromolecules using homologous structures, as well as generic restraints for the stabilization of secondary structures. These restraints are used by REFMAC5 to stabilize the refinement of an atomic model.

View Article and Find Full Text PDF

Lin28A is a post-transcriptional regulator of gene expression that interacts with and negatively regulates the biogenesis of let-7 family miRNAs. Recent data suggested that Lin28A also binds the putative tumor suppressor miR-363, a member of the 106~363 cluster of miRNAs. Affinity for this miRNA and the stoichiometry of the protein-RNA complex are unknown.

View Article and Find Full Text PDF

Background: Lin28 proteins are post-transcriptional regulators of gene expression with multiple roles in development and the regulation of pluripotency in stem cells. Much attention has focussed on Lin28 proteins as negative regulators of let-7 miRNA biogenesis; a function that is conserved in several animal groups and in multiple processes. However, there is increasing evidence that Lin28 proteins have additional roles, distinct from regulation of let-7 abundance.

View Article and Find Full Text PDF

B. cereus HlyIIR belongs to the TetR family of dimeric transcriptional regulators. Unlike other members of the TetR family, HlyIIR contains an insert between alpha-helices alpha8 and alpha9, which is located at the subunit-subunit interface.

View Article and Find Full Text PDF

The DNA-packaging motor in tailed bacteriophages requires nuclease activity to ensure that the genome is packaged correctly. This nuclease activity is tightly regulated as the enzyme is inactive for the duration of DNA translocation. Here, we report the X-ray structure of the large terminase nuclease domain from bacteriophage SPP1.

View Article and Find Full Text PDF

Concerted, stochastic and sequential mechanisms of action have been proposed for different hexameric AAA+ molecular motors. Here we report the crystal structure of the E1 helicase from bovine papillomavirus, where asymmetric assembly is for the first time observed in the absence of nucleotide cofactors and DNA. Surprisingly, the ATP-binding sites adopt specific conformations linked to positional changes in the DNA-binding hairpins, which follow a wave-like trajectory, as observed previously in the E1/DNA/ADP complex.

View Article and Find Full Text PDF

HlyIIR is a negative transcriptional regulator of hemolysin II gene from B. cereus. It binds to a long DNA perfect inverted repeat (44bp) located upstream the hlyII gene.

View Article and Find Full Text PDF

Production of Bacillus cereus and Bacillus anthracis toxins is controlled by a number of transcriptional regulators. Here we report the crystal structure of B. cereus HlyIIR, a regulator of the gene encoding the pore-forming toxin hemolysin II.

View Article and Find Full Text PDF