Publications by authors named "Oleg Korzyukov"

The pitch perturbation technique is a validated technique that has been used for over 30 years to understand how people control their voice. This technique involves altering a person's voice pitch in real-time while they produce a vowel (commonly, a prolonged /a/ sound). Although post-task changes in the voice have been observed in several studies (e.

View Article and Find Full Text PDF

To characterize potential brain indexes of attention deficit hyperactivity disorder (ADHD) in adults. In an effort to develop objective, laboratory-based tests that can help to establish ADHD diagnosis, the brain indexes of distractibility was investigated in a group of adults. We used event-related brain potentials (ERPs) and performance measures in a forced-choice visual task.

View Article and Find Full Text PDF

Predictive processing across hierarchically organized time scales is one of the fundamental principles of neural computations in the cerebral cortex. We hypothesize that relatively complex aggregation of auditory and vocal brain systems that use auditory feedback for reflexive control of vocalizations can be an object for predictive processing. We used repetitive patterns of perturbations in auditory feedback during vocalizations to elicit implicit expectations that were violated by surprising direction of perturbations in one of the experimental conditions.

View Article and Find Full Text PDF

Control of voice fundamental frequency (F0) relies in part on comparison of the intended F0 level and auditory feedback. This comparison impacts "sense of agency", or SoA, commonly defined as being the agent of one's own actions and plays a key role for self-awareness and social interactions. SoA is aberrant in several psychiatric disorders.

View Article and Find Full Text PDF

The predictive coding model suggests that voice motor control is regulated by a process in which the mismatch (error) between feedforward predictions and sensory feedback is detected and used to correct vocal motor behavior. In this study, we investigated how predictions about timing of pitch perturbations in voice auditory feedback would modulate ERP and behavioral responses during vocal production. We designed six counterbalanced blocks in which a +100 cents pitch-shift stimulus perturbed voice auditory feedback during vowel sound vocalizations.

View Article and Find Full Text PDF

Objective/hypothesis: It is known that singers are able to control their voice to maintain a relatively constant vocal quality while transitioning between vocal registers; however, the neural mechanisms underlying this effect are not understood. It was hypothesized that greater attention to the acoustical feedback of the voice and increased control of the vocal musculature during register transitions compared with singing within a register would be represented as neurological differences in event-related potentials.

Study Design/methods: Nine singers sang musical notes at the high end of the modal register (the boundary between the modal and the head/falsetto registers) and at the low end (the boundary between the modal and the fry/pulse registers).

View Article and Find Full Text PDF

The answer to the question of how the brain incorporates sensory feedback and links it with motor function to achieve goal-directed movement during vocalization remains unclear. We investigated the mechanisms of voice pitch motor control by examining the spectro-temporal dynamics of EEG signals when non-musicians (NM), relative pitch (RP), and absolute pitch (AP) musicians maintained vocalizations of a vowel sound and received randomized ± 100 cents pitch-shift stimuli in their auditory feedback. We identified a phase-synchronized (evoked) fronto-central activation within the theta band (5-8 Hz) that temporally overlapped with compensatory vocal responses to pitch-shifted auditory feedback and was significantly stronger in RP and AP musicians compared with non-musicians.

View Article and Find Full Text PDF

Objective: The present study was designed to test for neural signs of impulsivity related to voice motor control in young adults with ADHD using EEG recordings in a voice pitch perturbation paradigm.

Methods: Two age-matched groups of young adults were presented with brief pitch shifts of auditory feedback during vocalization. Compensatory behavioral and corresponding bioelectrical brain responses were elicited by the pitch-shifted voice feedback.

View Article and Find Full Text PDF

Previous research has shown that vocal errors can be simulated using a pitch perturbation technique. Two types of responses are observed when subjects are asked to ignore changes in pitch during a steady vowel production, a compensatory response countering the direction of the perceived change in pitch and a following response in the same direction as the pitch perturbation. The present study investigated the nature of these responses by asking subjects to volitionally change their voice fundamental frequency either in the opposite direction ("opposing" group) or the same direction ("following" group) as the pitch shifts (±100 cents, 1000 ms) presented during the speaker's production of an /a/ vowel.

View Article and Find Full Text PDF

It is advantageous to study a wide range of vocal abilities in order to fully understand how vocal control measures vary across the full spectrum. Individuals with absolute pitch (AP) are able to assign a verbal label to musical notes and have enhanced abilities in pitch identification without reliance on an external referent. In this study we used dynamic causal modeling (DCM) to model effective connectivity of ERP responses to pitch perturbation in voice auditory feedback in musicians with relative pitch (RP), AP, and non-musician controls.

View Article and Find Full Text PDF

Study Objectives: Permanent night-shift workers may develop shift-work disorder (SWD). In the current study, we evaluated neurophysiological and behavioral indices of distractibility across times prior to the night shift (T1), during night hours (T2), and after acute sleep deprivation (T3) in permanent hospital night workers with and without SWD.

Methods: Ten asymptomatic night workers (NW) and 18 NW with SWD participated in a 25-h sleep deprivation study.

View Article and Find Full Text PDF

The ability to process auditory feedback for vocal pitch control is crucial during speaking and singing. Previous studies have suggested that musicians with absolute pitch (AP) develop specialized left-hemisphere mechanisms for pitch processing. The present study adopted an auditory feedback pitch perturbation paradigm combined with ERP recordings to test the hypothesis whether the neural mechanisms of the left-hemisphere enhance vocal pitch error detection and control in AP musicians compared with relative pitch (RP) musicians and non-musicians (NM).

View Article and Find Full Text PDF

The integration of auditory feedback with vocal motor output is important for the control of voice fundamental frequency (F0). We used a pitch-shift paradigm where subjects respond to an alteration, or shift, of voice pitch auditory feedback with a reflexive change in F0. We presented varying magnitudes of pitch shifted auditory feedback to subjects during vocalization and passive listening and measured event related potentials (ERPs) to the feedback shifts.

View Article and Find Full Text PDF

Chronic sleep loss has been associated with increased daytime sleepiness, as well as impairments in memory and attentional processes. In the present study, we evaluated the neuronal changes of a pre-attentive process of wake auditory sensory gating, measured by brain event-related potential (ERP)--P50 in eight normal sleepers (NS) (habitual total sleep time (TST) 7 h 32 m) vs. eight chronic short sleeping individuals (SS) (habitual TST ≤6 h).

View Article and Find Full Text PDF

The present study describes a technique for analysis of vocal responses to auditory feedback pitch perturbations in which individual trials are first sorted according to response direction and then separately averaged in groups of upward or downward responses. In experiment 1, the stimulus direction was predictable (all upward) but magnitude was randomized between +100, +200, or +500 cents (unpredictable). Results showed that pitch-shift stimuli (PSS) of +100 and +200 cents elicited significantly larger opposing (compensatory) responses than +500 cent stimuli, but no such effect was observed for "following" responses.

View Article and Find Full Text PDF

Accurate vocal production relies on several factors including sensory feedback and the ability to predict future challenges to the control processes. Repetitive patterns of perturbations in sensory feedback by themselves elicit implicit expectations in the vocal control system regarding the timing, quality and direction of perturbations. In the present study, the predictability of voice pitch-shifted auditory feedback was experimentally manipulated.

View Article and Find Full Text PDF

Previous studies have shown that the pitch of a sound is perceived in the absence of its fundamental frequency (F0), suggesting that a distinct mechanism may resolve pitch based on a pattern that exists between harmonic frequencies. The present study investigated whether such a mechanism is active during voice pitch control. ERPs were recorded in response to +200 cents pitch shifts in the auditory feedback of self-vocalizations and complex tones with and without the F0.

View Article and Find Full Text PDF

Study Objectives: Reduced time in bed relative to biological sleep need is common. The impact of habitual short sleep on auditory attention has not been studied to date. In the current study, we utilized novelty oddball tasks to evaluate the effect of habitual short sleep on brain function underlying attention control processes measured by the mismatch negativity (MMN, index of pre-attentive stage), P3a (attention-dependent), and P3b (memory-dependent) event related brain potentials (ERPs).

View Article and Find Full Text PDF

Auditory sensory processing is an important element of the neural mechanisms controlling human vocalization. We evaluated which components of Event Related Potentials (ERP) elicited by the unexpected shift of fundamental frequency in a subject's own voice might correlate with his/her ability to process auditory information. A significant negative correlation between the latency of the N1 component of the ERP and the Montreal Battery of Evaluation of Amusia scores for Melodic organization was found.

View Article and Find Full Text PDF

Objective: The present study investigated the neural mechanisms of voice pitch control for different levels of harmonic complexity in the auditory feedback.

Methods: Event-related potentials (ERPs) were recorded in response to+200 cents pitch perturbations in the auditory feedback of self-produced natural human vocalizations, complex and pure tone stimuli during active vocalization and passive listening conditions.

Results: During active vocal production, ERP amplitudes were largest in response to pitch shifts in the natural voice, moderately large for non-voice complex stimuli and smallest for the pure tones.

View Article and Find Full Text PDF

Study Objective: To study the neurophysiological changes in attention and memory functions in shift work sleep disorder (SWSD), using event-related brain potentials (ERPs).

Participants: 9 healthy night workers (NW) (mean age = 40 y; SD +/- 8.9 y); 8 night workers meeting diagnostic criteria for SWSD (mean age = 37 y +/- 9.

View Article and Find Full Text PDF

Maturational studies of the auditory-evoked brain response at the 50 ms latency provide an insight into why this response is aberrant in a number of psychiatric disorders that have developmental origin. Here, using intracranial recordings we found that neuronal activity of the primary contributors to this response can be localised at the lateral part of Heschl's gyrus already at the age of 3.5 years.

View Article and Find Full Text PDF

Clarification of the cortical mechanisms underlying auditory sensory gating may advance our understanding of brain dysfunctions associated with schizophrenia. To this end, data from nine epilepsy patients who participated in an auditory paired-click paradigm during pre-surgical evaluation and had grids of electrodes covering temporal and frontal lobe were analyzed. A distributed source localization approach was applied to the intracranial P50 response and the Gating Difference Wave obtained by subtracting the response to the second stimuli from the response to the first stimuli.

View Article and Find Full Text PDF

A deficit in sensory gating measured by the suppression of P50 auditory event-related potential (ERP) has been implicated in the biological bases of schizophrenia and some other psychiatric disorders and proposed as a candidate endophenotype for genetic studies. More recently, it has been shown that gating deficits in schizophrenics extend to ERP components reflecting early attentive processing (the N1/P2 complex). However, evidence for heritability of sensory gating in the general population is very limited.

View Article and Find Full Text PDF

The relationship between epilepsy and psychosis is not well defined. Sensory gating is a possible endophenotype for psychosis, and has not been fully examined in epileptic patients. The authors examined 29 patients with focal epilepsy who were on antiepileptic medications, and 29 age-matched healthy comparison subjects, using a paired-stimulus (S1-S2) paradigm.

View Article and Find Full Text PDF