Publications by authors named "Oleg Korotchenkov"

The thermal conductivity of epoxy nanocomposites filled with self-assembled hybrid nanoparticles composed of multilayered graphene nanoplatelets and anatase nanoparticles was described using an analytical model based on the effective medium approximation with a reasonable amount of input data. The proposed effective thickness approach allowed for the simplification of the thermal conductivity simulations in hybrid graphene@anatase TiO nanosheets by including the phenomenological thermal boundary resistance. The sensitivity of the modeled thermal conductivity to the geometrical and material parameters of filling particles and the host polymer matrix, filler's mass concentration, self-assembling degree, and Kapitza thermal boundary resistances at emerging interfaces was numerically evaluated.

View Article and Find Full Text PDF

Nickel films with nanovoids filled with fullerene molecules have been fabricated. The thermoelectric properties of the nanocomposites have been measured from room temperature down to about 30 K. The main idea is that the phonon scattering can be enhanced at the C/matrix heterointerface.

View Article and Find Full Text PDF

The field of chemical and physical transformations induced by ultrasonic waves has shown steady progress during the past decades. There is a solid core of established results and some topics that are not thoroughly developed. The effect of varying ultrasonic frequency is among the most beneficial issues that require advances.

View Article and Find Full Text PDF

Due to their inherent physical properties, thin-film Si/SiGe heterostructures have specific thermal management applications in advanced integrated circuits and this in turn is essential not only to prevent a high local temperature and overheat inside the circuit, but also generate electricity through the Seebeck effect. Here, we were able to enhance the Seebeck effect in the germanium composite quantum dots (CQDs) embedded in silicon by increasing the number of thin silicon layers inside the dot (multi-fold CQD material). The Seebeck effect in the CQD structures and multi-layer boron atomic layer-doped SiGe epitaxial films was studied experimentally at temperatures in the range from 50 to 300 K and detailed calculations for the Seebeck coefficient employing different scattering mechanisms were made.

View Article and Find Full Text PDF

Various material properties change considerably when material is thinned down to nanometer thicknesses. Accordingly, researchers have been trying to obtain homogeneous thin films with nanometer thickness but depositing homogeneous few nanometers thick gold film is challenging as it tends to form islands rather than homogenous film. Recently, studies have revealed that treating the substrate with an organic buffer, (3-mercaptopropyl) trimethoxysilane (MPTMS) enables deposition of ultra-thin gold film having thickness as low as 5 nm.

View Article and Find Full Text PDF

We present a simple theoretical model that predicts the thermal conductivity of SiO2 layers with embedded Ge quantum dots (QDs). Overall, the resulting nanoscale architecture comprising the structural relaxation in the SiO2 matrix, deviation in mass density of the QDs compared to the surrounding matrix and local strains associated with the dots are all likely to enhance phonon scattering and thus reduce the thermal conductivity in these systems. We have found that the conductivity reduction can be predicted by the dot-induced local elastic perturbations in SiO2.

View Article and Find Full Text PDF

Standing-wave piezoelectric fields in the LiNbO(3) driving plate are used to form depleted and accumulated electron densities in GaAs/AlGaAs quantum wells (QWs). The photoluminescence spectrum of the two-dimensional electron system varies both spatially and temporally, exhibiting an electron-hole plasma recombination and exciton and trion emissions at large and small electron densities, respectively. Controlling the piezoelectric field component perpendicular to the QW layers offers a versatile tool to achieve the spatially indirect exciton luminescence in double QW structures.

View Article and Find Full Text PDF