High-harmonic spectroscopy is an all-optical technique with inherent attosecond temporal resolution that has been successfully employed to reconstruct charge migration, electron-tunneling dynamics, and conical-intersection dynamics. Here, we demonstrate the extension of two key components of high-harmonic spectroscopy, i.e.
View Article and Find Full Text PDFDissociative ionization of tetrafluoromethane (CF) in linearly polarized -2 ultrashort intense laser fields (1.4 × 10 W/cm, 800 and 400 nm) has been investigated by three-dimensional momentum ion imaging. The spatial distribution of produced by CF → + F + e exhibited a clear asymmetry with respect to the laser polarization direction.
View Article and Find Full Text PDFWe present a general methodology for evaluating structure factors defining the orientation dependence of tunneling ionization rates of molecules, which is a key process in strong-field physics. The method is implemented at the Hartree-Fock level of electronic structure theory and is based on an integral-equation approach to the weak-field asymptotic theory of tunneling ionization, which expresses the structure factor in terms of an integral involving the ionizing orbital and a known analytical function. The evaluation of the required integrals is done by three-dimensional quadrature which allows calculations using conventional quantum chemistry software packages.
View Article and Find Full Text PDFWe revisit the concept of near-forward rescattering strong-field photoelectron holography introduced by Y. Huismans et al. [Science 331, 61 (2011)].
View Article and Find Full Text PDFTunneling-ionization imaging of photoexcitation of NO has been demonstrated by using few-cycle near-infrared intense laser pulses (8 fs, 800 nm, 1.1×10^{14} W/cm^{2}). The ion image of N^{+} fragment ions produced by dissociative ionization of NO in the ground state, NO (X^{2}Π,2π)→NO^{+}+e^{-}→N^{+}+O+e^{-}, exhibits a characteristic momentum distribution peaked at 45° with respect to the laser polarization direction.
View Article and Find Full Text PDFWe report angle- and momentum-resolved measurements of the dissociative ionization and Coulomb explosion of methyl halides (CH3F, CH3Cl, CH3Br, and CH3I) in intense phase-controlled two-color laser fields. At moderate laser intensities, we find that the emission asymmetry of low-energy CH3(+) fragments from the CH3(+) + X(+) (X = F, Cl, Br, or I) channel reflects the asymmetry of the highest occupied molecular orbital of the neutral molecule with important contributions from the Stark effect. This asymmetry is correctly predicted by the weak-field asymptotic theory, provided that the Stark effect on the ionization potentials is calculated using a nonperturbative multielectron approach.
View Article and Find Full Text PDFWe show that retardation in adjusting an electronic state to an instantaneous internuclear configuration caused by the finiteness of the electron's velocity breaks the validity of the Born-Oppenheimer (BO) approximation at large electron-nuclei distances. This applies even to the ground state. As a result, the BO approximation in the theory of tunneling ionization of molecules breaks down at sufficiently weak fields.
View Article and Find Full Text PDFA very slow electron is shown to emerge when an intense high-frequency laser pulse is applied to a hydrogen negative ion. This counterintuitive effect cannot be accounted for by multiphoton or tunneling ionization mechanisms. We explore the effect and show that in the high-frequency regime the atomic electron is promoted to the continuum via a nonadiabatic transition caused by slow deformation of the dressed potential that follows a variation of the envelope of the laser pulse.
View Article and Find Full Text PDF