Publications by authors named "Oleg Grinberg"

Article Synopsis
  • - Following a major radiation event, doctors will need to prioritize treatment based on how much radiation people have been exposed to, targeting care only to those who will benefit from it.
  • - The text discusses a two-tier triage system: the first tier removes those unlikely to benefit, while the second tier uses biodosimetry to assess radiation doses and distribution among the remaining patients.
  • - It highlights in vivo electron paramagnetic resonance nail biodosimetry as a method for quickly determining exposure levels, suggesting improvements to this technique to enhance precision and usability in real-life triage situations.
View Article and Find Full Text PDF
Article Synopsis
  • There is a need for effective methods to quickly and accurately measure individual radiation doses during radiological or nuclear emergencies, particularly using in vivo X-band electron paramagnetic resonance dosimetry to analyze signals in fingernails.* -
  • Development focuses on creating specialized resonators that sample larger volumes but restrict measurements to the nail plate, and also tackle challenges like interference from other signals and calibration issues.* -
  • Initial tests with different resonator designs on nail models and healthy volunteers indicate good sensitivity for detecting radiation signals, but further research is necessary to refine the technology and assess its viability for real-world triage applications.*
View Article and Find Full Text PDF

A new resonator for X-band in vivo EPR nail dosimetry, the dielectric-backed aperture resonator (DAR), is developed based on rectangular TE geometry. This novel geometry for surface spectroscopy improves at least a factor of 20 compared to a traditional non-backed aperture resonator. Such an increase in EPR sensitivity is achieved by using a non-resonant dielectric slab, placed on the aperture inside the cavity.

View Article and Find Full Text PDF

There is an imperative need to develop methods that can rapidly and accurately determine individual exposure to radiation for screening (triage) populations and guiding medical treatment in an emergency response to a large-scale radiological/nuclear event. To this end, a number of methods that rely on dose-dependent chemical and/or physical alterations in biomaterials or biological responses are in various stages of development. One such method, ex vivo electron paramagnetic resonance (EPR) nail dosimetry using human nail clippings, is a physical biodosimetry technique that takes advantage of a stable radiation-induced signal (RIS) in the keratin matrix of fingernails and toenails.

View Article and Find Full Text PDF
Article Synopsis
  • Concerns about radiation exposure have intensified after events like Fukushima, raising the need for efficient medical triage following a potential disaster.
  • *The medical community must distinguish between individuals needing treatment for radiation exposure and those who do not, and electron paramagnetic resonance (EPR) has shown promise in identifying significant exposure in various tissues like teeth and nails.
  • *With advancements in EPR technology, including partnerships with GE and the aim for FDA approval, there is potential for effective on-site and remote testing methods to support medical responses in large-scale radiation incidents.*
View Article and Find Full Text PDF

Rapid and accurate retrospective dosimetry is of critical importance and strategic value for the emergency medical response to a large-scale radiological/nuclear event. One technique that has the potential for rapid and accurate dosimetry measurements is electron paramagnetic resonance (EPR) spectroscopy of relatively stable radiation-induced signals (RIS) in fingernails and toenails. Two approaches are being developed for EPR nail dosimetry.

View Article and Find Full Text PDF

In order to meet the potential need for emergency large-scale retrospective radiation biodosimetry following an accident or attack, we have developed instrumentation and methodology for in vivo electron paramagnetic resonance spectroscopy to quantify concentrations of radiation-induced radicals within intact teeth. This technique has several very desirable characteristics for triage, including independence from confounding biologic factors, a non-invasive measurement procedure, the capability to make measurements at any time after the event, suitability for use by non-expert operators at the site of an event, and the ability to provide immediate estimates of individual doses. Throughout development there has been a particular focus on the need for a deployable system, including instrumental requirements for transport and field use, the need for high throughput, and use by minimally trained operators.

View Article and Find Full Text PDF

Exposure to high altitude or hypobaric hypoxia results in a series of metabolic, physiologic, and genetic changes that serve to acclimate the brain to hypoxia. Tissue Po(2) (Pto(2)) is a sensitive index of the balance between oxygen delivery and utilization and can be considered to represent the summation of such factors as cerebral blood flow, capillary density, hematocrit, arterial Po(2), and metabolic rate. As such, it can be used as a marker of the extent of acclimation.

View Article and Find Full Text PDF

Finite element analysis is used to evaluate and design L-band surface loop resonators for in vivo electron paramagnetic resonance (EPR) tooth dosimetry. This approach appears to be practical and useful for the systematic examination and evaluation of resonator configurations to enhance the precision of dose estimates. The effects of loop positioning in the mouth are examined, and it is shown that the sensitivity to loop position along a row of molars is decreased as the loop is moved away from the teeth.

View Article and Find Full Text PDF

In vivo electron paramagnetic resonance (EPR) tooth dosimetry provides a means for non-invasive retrospective assessment of personal radiation exposure. While there is a clear need for such capabilities following radiation accidents, the most pressing need for the development of this technology is the heightened likelihood of terrorist events or nuclear conflicts. This technique will enable such measurements to be made at the site of an incident, while the subject is present, to assist emergency personnel as they perform triage for the affected population.

View Article and Find Full Text PDF

As a result of terrorism, accident, or war, populations potentially can be exposed to doses of ionizing radiation that could cause direct clinical effects within days or weeks. There is a critical need to determine the magnitude of the exposure to individuals so that those with significant risk have appropriate procedures initiated immediately, while those without a significant probability of acute effects can be reassured and removed from the need for further consideration in the medical/emergency system. In many of the plausible scenarios there is an urgent need to make the determination very soon after the event and while the subject is still present.

View Article and Find Full Text PDF

Charcoals prepared from certain tropical woods contain stable paramagnetic centers, and these have been characterized by EPR spectroscopy in the absence and presence of oxygen. The EPR-detectable spin density has been determined, as has been the temperature- and frequency-dependence of the oxygen broadening of the EPR signal, which is orders of magnitude larger than that observed with other materials, such as lithium phthalocyanine. Three Lorentzian components are required to fit the char EPR spectrum in the presence of oxygen, and the oxygen-dependence of the line width, intensity, and resonance position of the three components have been quantified.

View Article and Find Full Text PDF

In vivo electron paramagnetic resonance (EPR) spectroscopy can provide direct noninvasive, continuous, and repeatable measurements of oxygen in tissues. High-spatial-resolution multisite (HSRMS) oximetry is an EPR technique that uses applied magnetic field gradients to extend this capability to multiple implanted probes within the sample and accurately to estimate their respective local pO(2) values. These capabilities are crucial in experiments in which pO(2) varies across space and time and in which information about these variations is needed to describe physiologic and pathophysiologic phenomena and evaluate their responses to interventions such as therapy.

View Article and Find Full Text PDF

We examined the effect of hyperbaric oxygen (HBO) and normobaric oxygen (NBO) on neurologic damage and brain oxygenation before and after focal cerebral ischemia in rats. A middle cerebral artery occlusion (MCAO)/reperfusion rat model was used. The rats were sacrificed 22 h after reperfusion, and the infarct volume was evaluated.

View Article and Find Full Text PDF

Efaproxiral, an allosteric modifier of hemoglobin, reduces hemoglobin-oxygen binding affinity, facilitating oxygen release from hemoglobin, which is likely to increase tissue pO(2). The purpose of this study was to determine the effect of efaproxiral on tumor oxygenation and growth inhibition of RIF-1 tumors that received X radiation (4 Gy) plus oxygen breathing compared to radiation plus oxygen plus efaproxiral daily for 5 days. Two lithium phthalocyanine (LiPc) deposits were implanted in RIF-1 tumors in C3H mice for tumor pO(2) measurements using EPR oximetry.

View Article and Find Full Text PDF

Changes in cerebral oxygenation were simultaneously monitored by electric paramagnetic resonance (EPR) oximetry and near-infrared spectroscopy (NIRS). The tissue oxygen tension (t-pO2) was measured with an L-band (1.2 GHz) EPR spectrometer with an external loop resonator and the concentration of oxyhemoglobin [HbO2] and deoxyhemoglobin [Hb] were measured with a full-spectral NIRS system.

View Article and Find Full Text PDF

We describe our results on the effect in rats of two commonly used, volatile anesthetics on cerebral tissue PO2 (PtO2) and other physiological parameters at FiO2 levels ranging from 0.35 to 0.1.

View Article and Find Full Text PDF

The cylindrical steady-state model developed by Krogh with Erlang has served as the basis of understanding oxygen supply in living tissue for over eighty years. Due to its simplicity and agreement with some observations, it has been extensively used and successfully extended to new fields, especially for situations such as drug diffusion, water transport, and ice formation in tissues. However, the applicability of the model to make even a qualitative prediction of the oxygen level of specific volumes of the tissue is still controversial.

View Article and Find Full Text PDF

EPR oximetry is a technique that can make repeated non-invasive measurements of the PO2 in tissues. To extend the application of EPR oximetry to humans, India ink is the probe of choice because appropriate India inks have EPR signals whose line widths are sensitive to changes in oxygen concentrations, and, most importantly, India ink already has been used extensively in humans as a marker in the skin, lymphatics, various organs during surgery, tumors, and for decoration as tattoos. We have developed an India ink that has good sensitivity to oxygen, high stability in tissues, good signal intensity, and minimal toxicity.

View Article and Find Full Text PDF

It is known that oxygen tension in tissue (ptO2) will change in response to an alteration of physiological parameters including: pCO2 in arterial blood, blood flow, capillary density, oxygen carrying capacity, and p50 of hemoglobin. We have used modeling to compute the change of PtO2 in response to changes of each physiological parameter and related these changes to experimental data. The oxygen distribution in a Krogh cylinder was computed assuming a linear decrease of hemoglobin saturation from the arterial to the venous end of the capillary.

View Article and Find Full Text PDF

Purpose: To determine quantitatively the changes in oxygenation of intracranial tumors induced by efaproxiral, an allosteric hemoglobin modifier. Efaproxiral reduces hemoglobin-oxygen binding affinity, which facilitates oxygen release from hemoglobin into surrounding tissues and potentially increases the pO(2) of the tumors.

Methods And Materials: The study was performed on 10 male Fisher 344 rats with 9L intracranial tumors.

View Article and Find Full Text PDF

Multi-site electron paramagnetic resonance (EPR) oximetry was used in vivo to measure the partial pressure of oxygen (pO2) in reversible focal ischemia in rats. The cerebral tissue pO2 was measured simultaneously and continuously at two sites on the ischemic side and one on the normal side of the brain in the same animal prior to and at several time points after ischemia and reperfusion. The O2 at the three different sites in brain was stable over 30 min of baseline measurements.

View Article and Find Full Text PDF

The technique of spin trapping is used to study a wide range of free radicals in various systems, including those generated in vitro and in vivo. But unfortunately, EPR spectrometers are not always immediately accessible at the site of experimentation, and therefore it is important to find a method that can preserve a radical adduct over longer periods of time. We describe here an alternative method in which the samples can be frozen and transported for EPR measurements at another site.

View Article and Find Full Text PDF

Low-frequency EPR has the potential advantage of making accurate and sensitive measurements of absorbed radiation dose in teeth in situ. We report here on measurements within the human mouth in volunteers using 1200 MHz EPR, with an irradiated tooth in a special holder. We obtained a signal/noise ratio within 50% of that seen when the same sample was measured extraorally.

View Article and Find Full Text PDF

We have determined the properties of the various signals that are observed in vivo so this information can be used to develop procedures for data acquisition and data analysis that will enable the accurate determination of radiation-induced dose with a resolution of 50cGy. Using the 1200MHz in vivo EPR spectrometer and isolated human teeth, we found four types of signals whose properties overlap, but also have some distinct properties that can be exploited to resolve them. The intrinsic background signal in human teeth differs modestly from the radiation-induced signal in g-factor, shape, and power saturation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvmek7ki7k15geed06harbunnk3mlucdd): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once