Publications by authors named "Oleg Derzhko"

Recently, a kind of finite-temperature pseudotransition was observed in several quasi-one-dimensional models. In this work, we consider a genuine one-dimensional extended Hubbard model in the atomic limit, influenced by an external magnetic field and with the arbitrary number of particles controlled by the chemical potential. The one-dimensional extended Hubbard model in the atomic limit was initially studied in the seventies and has been investigated over the past decades, but it still surprises us today with its fascinating properties.

View Article and Find Full Text PDF

Recently, it has been rigorously verified that several one-dimensional (1D) spin models may exhibit a peculiar pseudo-transition accompanied with anomalous response of thermodynamic quantities in a close vicinity of pseudo-critical temperature. In the present work we will introduce and exactly solve a mixed spin-(1/2,1) Ising-Heisenberg double-tetrahedral chain in an external magnetic field as another particular example of 1D lattice-statistical model with short-range interactions that displays a pseudo-transition of this type. The investigated model exhibits at zero temperature three ferrimagnetic phases, three frustrated phases, and one saturated paramagnetic phase.

View Article and Find Full Text PDF

For a class of frustrated antiferromagnetic spin lattices (in particular, the square-kagomé and kagomé lattices) we discuss the impact of recently discovered exact eigenstates on the stability of the lattice against distortions. These eigenstates consist of independent localized magnons embedded in a ferromagnetic environment and become ground states in high magnetic fields. For appropriate lattice distortions fitting to the structure of the localized magnons the lowering of magnetic energy can be calculated exactly and is proportional to the displacement of atoms leading to a spin-Peierls lattice instability.

View Article and Find Full Text PDF

Using the Jordan-Wigner transformation and continued fractions we calculate rigorously the thermodynamic quantities for the spin-1/2 transverse Ising chain with periodically varying intersite interactions and/or on-site fields. We consider in detail the properties of the chains having a period of the transverse field modulation equal to 3. The regularly alternating transverse Ising chain exhibits several quantum phase transition points, where the number of transition points for a given period of alternation strongly depends on the specific set of the Hamiltonian parameters.

View Article and Find Full Text PDF