Organic semiconductors hold immense promise for the development of a wide range of innovative devices with their excellent electronic and manufacturing characteristics. Of particular interest are nonmagnetic organic semiconductors that show unusual magnetic field effects (MFEs) at small subtesla field strength that can result in substantial changes in their optoelectronic and electronic properties. These unique phenomena provide a tremendous opportunity to significantly impact the functionality of organic-based devices and may enable disruptive electronic and spintronic technologies.
View Article and Find Full Text PDFPoly(3,4-ethylene dioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS) films exhibit a complex structure of interconnected conductive PEDOT domains in an insulating PSS matrix that controls their electrical properties. This structure is modified by a water rinse, which removes PSS with negligible PEDOT loss. Upon PSS removal, film thickness is reduced by 35%, conductivity is increased by 50%, and a prominent dielectric relaxation is eliminated.
View Article and Find Full Text PDF