Publications by authors named "Ole V Gjoerup"

Introduction: Circulating tumor DNA (ctDNA) detection postoperatively may identify patients with urothelial cancer at a high risk of relapse. Pragmatic tools building off clinical tumor next-generation sequencing (NGS) platforms could have the potential to increase assay accessibility.

Methods: We evaluated the widely available Foundation Medicine comprehensive genomic profiling (CGP) platform as a source of variants for tracking of ctDNA when analyzing residual samples from IMvigor010 (ClinicalTrials.

View Article and Find Full Text PDF

Purpose: In real-world settings, patients with metastatic urothelial carcinoma (mUC) are often more frail than clinical trials, underscoring an unmet need to identify patients who might be spared first-line chemotherapy. We sought to determine whether tumor mutational burden (TMB) identifies patients with comparable or superior clinical benefit of first-line single-agent immune checkpoint inhibitors (ICPI) in real-world patients deemed cisplatin-unfit.

Methods: Patients with mUC treated in first-line advanced setting (N = 401) received ICPI (n = 245) or carboplatin regiment without ICPI (n = 156) at physician's discretion in standard-of-care settings across approximately 280 US academic or community-based cancer clinics between March 2014 and July 2021.

View Article and Find Full Text PDF

Background: Biomarkers predicting second-generation novel hormonal therapy (NHT) benefit relative to taxanes are critical for optimized treatment decisions for metastatic castration-resistant prostate cancer (mCRPC) patients. These associations have not been reported simultaneously for common mCRPC genomic biomarkers.

Objective: To evaluate predictive associations of common genomic aberrations in mCRPC using an established comprehensive genomic profiling (CGP) system.

View Article and Find Full Text PDF

Purpose: Comprehensive genomic profiling (CGP) is of increasing value for patients with metastatic castration-resistant prostate cancer (mCRPC). mCRPC tends to metastasize to bone, making tissue biopsies challenging to obtain. We hypothesized CGP of cell-free circulating tumor DNA (ctDNA) could offer a minimally invasive alternative to detect targetable genomic alterations (GA) that inform clinical care.

View Article and Find Full Text PDF

Polyomaviruses encode a large T Ag (LT), a multifunctional protein essential for the regulation of both viral and host cell gene expression and productive viral infection. Previously, we have shown that stable expression of LT protein results in upregulation of genes involved in the IFN induction and signaling pathway. In this study, we focus on the cellular signaling mechanism that leads to the induction of IFN responses by LT.

View Article and Find Full Text PDF

We previously demonstrated that simian virus 40 (SV40) large T antigen (LT) binds to the Bub1 kinase, a key regulator of the spindle checkpoint and chromosome segregation. Bub1 mutations or altered expression patterns are linked to chromosome missegregation and are considered to be a driving force in some human cancers. Here we report that LT, dependent on Bub1 binding, causes micronuclei, lagging chromatin, and anaphase bridges, which are hallmarks of chromosomal instability (CIN) and Bub1 insufficiency.

View Article and Find Full Text PDF

The promyelocytic leukemia protein (PML) is a tumor suppressor critical for formation of nuclear bodies (NBs) performing important functions in transcription, apoptosis, DNA repair and antiviral responses. Earlier studies demonstrated that simian virus 40 (SV40) initiates replication near PML NBs. Here we show that PML knockdown inhibits viral replication in vivo, thus indicating a positive role of PML early in infection.

View Article and Find Full Text PDF

Merkel cell polyomavirus (MCV) has been recently described as the cause for most human Merkel cell carcinomas. MCV is similar to simian virus 40 (SV40) and encodes a nuclear large T (LT) oncoprotein that is usually mutated to eliminate viral replication among tumor-derived MCV. We identified the hVam6p cytoplasmic protein involved in lysosomal processing as a novel interactor with MCV LT but not SV40 LT.

View Article and Find Full Text PDF

We demonstrated previously that expression of simian virus 40 (SV40) large T antigen (LT), without a viral origin, is sufficient to induce the hallmarks of a cellular DNA damage response (DDR), such as focal accumulation of gamma-H2AX and 53BP1, via Bub1 binding. Here we expand our characterization of LT effects on the DDR. Using comet assays, we demonstrate that LT induces overt DNA damage.

View Article and Find Full Text PDF

Resistance to anoikis, the subtype of apoptosis triggered by lack of adhesion, contributes to malignant transformation and the development of metastasis. Although several lines of evidence suggest that p53 plays a critical role in anoikis, the pathway(s) that connect cell detachment to p53 remain undefined. Here, through the use of a kinome-wide loss-of-function screen, we identify the serine-threonine kinase SIK1 (salt-inducible kinase 1) as a regulator of p53-dependent anoikis.

View Article and Find Full Text PDF

Simian virus 40 (SV40) large T antigen (LT) is a multifunctional protein that is important for viral replication and oncogenic transformation. Previously, infection of monkey or human cells with SV40 was shown to lead to the induction of DNA damage response signaling, which is required for efficient viral replication. However, it was not clear if LT is sufficient to induce the damage response and, if so, what the genetic requirements and functional consequences might be.

View Article and Find Full Text PDF

Here, we show how targeting protein phosphatase 2A (PP2A), a key regulator of cellular protein phosphorylation, can either induce or prevent apoptosis depending on what other signals the cell is receiving. The oncoprotein polyoma small T interacts with PP2A to regulate survival. In the presence of growth factors, small T induces apoptosis.

View Article and Find Full Text PDF

The spindle assembly checkpoint is an important surveillance mechanism that ensures high fidelity mitotic chromosome segregation. This is accomplished by monitoring whether sister chromatids lack tension or attachment to spindle microtubules. It is mediated by checkpoint complexes or individual proteins that inhibit the ubiquitin ligase activity of the anaphase-promoting complex/cyclosome (APC/C) via targeting of the Cdc20 regulatory subunit.

View Article and Find Full Text PDF

The Bub1 kinase is a critical component of the spindle checkpoint involved in monitoring the separation of sister chromatids at mitosis. The viral oncoprotein Simian virus 40 large T antigen (LT) can bind and perturb the spindle checkpoint function of Bub1. We have developed three highly specific monoclonal antibodies against the Bub1 protein and have demonstrated that they can all detect Bub1 via Western blotting and immunofluorescence, in addition to their ability to immunoprecipitate Bub1.

View Article and Find Full Text PDF

Bub1 is a kinase believed to function primarily in the mitotic spindle checkpoint. Mutation or aberrant Bub1 expression is associated with chromosomal instability, aneuploidy, and human cancer. We now find that targeting Bub1 by RNAi or simian virus 40 (SV40) large T antigen in normal human diploid fibroblasts results in premature senescence.

View Article and Find Full Text PDF

Growth factor signaling is mediated through Class IA phosphatidylinositol 3-kinases (PI3Ks). Among this class of enzymes, only p110alpha, encoded by the PIK3CA gene, has been found to be mutant in human cancers. To determine the specific functions of p110alpha, we generated mice carrying a conditionally targeted allele of the PIK3CA gene.

View Article and Find Full Text PDF

The mitotic spindle checkpoint protein Bub1 has been found to be mutated at low frequency in certain human cancers characterized by aneuploidy. Simian virus 40 large T antigen efficiently immortalizes rodent cells and occasionally transforms them to tumorigenicity. T antigen can also cause genomic instability, inducing chromosomal aberrations and aneuploidy.

View Article and Find Full Text PDF

Recent studies have demonstrated that introduction of hTERT in combination with SV40 large T antigen (LT), small t antigen (st), and H-rasV12 suffices to transform many primary human cells. In human mammary epithelial cells (HMECs) expressing elevated c-Myc, activated H-Ras is dispensable for anchorage-independent growth. Using this system, we show that st activates the PI3K pathway and that constitutive PI3K signaling substitutes for st in transformation.

View Article and Find Full Text PDF