Publications by authors named "Ole Skott"

Besides the well-known renal effects of aldosterone, the hormone is now known to have direct vascular effects. Clinical observations underline substantial adverse effects of aldosterone on cardiovascular function. The source of systemic circulating aldosterone is the adrenal gland zona glomerulosa cells through stimulus-secretion coupling involving depolarization, opening of L- and T-type calcium channels and aldosterone synthase activation.

View Article and Find Full Text PDF

Voltage-gated calcium channels are involved in the vascular excitation-contraction mechanism and regulation of arterial blood pressure. It was hypothesized that T-type channels promote formation of nitric oxide from the endothelium. The present experiments determine the involvement of T-type channels in depolarization-dependent dilatation of mesenteric arteries and blood pressure regulation in Cav3.

View Article and Find Full Text PDF

In arterioles, aldosterone counteracts the rapid dilatation (recovery) following depolarization-induced contraction. The hypothesis was tested that this effect of aldosterone depends on cyclooxygenase (COX)-derived products and/or nitric oxide (NO) synthase (NOS) inhibition. Recovery of the response to high K(+) was observed in mesenteric arteries of wild-type and COX-2(-/-) mice but it was significantly diminished in preparations from endothelial NOS (eNOS)(-/-) mice.

View Article and Find Full Text PDF

A major rate-limiting step in the renin-angiotensin-aldosterone system is the release of active renin from endocrine cells (juxtaglomerular (JG) cells) in the media layer of the afferent glomerular arterioles. The number and distribution of JG cells vary with age and the physiological level of stimulation; fetal life and chronic stimulation by extracellular volume contraction is associated with recruitment of renin-producing cells. Upon stimulation of renin release, labeled renin granules "disappear;" the number of granules decrease; cell membrane surface area increases in single cells, and release is quantal.

View Article and Find Full Text PDF

Calcium channel blockers are widely used for treatment of hypertension, because they decrease peripheral vascular resistance through inhibition of voltage-gated calcium channels. Animal studies of renal vasculature have shown expression of several types of calcium channels that are involved in kidney function. It was hypothesized that human renal vascular excitation-contraction coupling involves different subtypes of channels.

View Article and Find Full Text PDF

Purpose Of Review: Activation of epithelial sodium channel (ENaC) by proteolysis appears to be relevant for day-to-day physiological regulation of channel activity in kidney and other epithelial tissues. Pathophysiogical, proteolytic activation of ENaC in kidney has been demonstrated in proteinuric disease.

Recent Findings: A variation in sodium and potassium intake or plasma aldosterone changes the number of cleaved α and γ-ENaC subunits and is associated with changes in ENaC currents.

View Article and Find Full Text PDF

1. Sodium retention in disease states characterized by proteinuria, such as nephrotic syndrome, pre-eclampsia and diabetic nephropathy, occurs through poorly understood mechanism(s). 2.

View Article and Find Full Text PDF

Voltage-gated calcium channels are important for the regulation of renal blood flow and the glomerular filtration rate. Excitation-contraction coupling in afferent arterioles is known to require activation of these channels and we studied their role in the regulation of cortical efferent arteriolar tone. We used microdissected perfused mouse efferent arterioles and found a transient vasoconstriction in response to depolarization with potassium; an effect abolished by removal of extracellular calcium.

View Article and Find Full Text PDF

Background: Mice with targeted deletion of neuronal nitric oxide (NO) synthase (nNOS⁻(/)⁻) display inability to increase plasma renin concentration (PRC) in response to sodium restriction. nNOS has a distinct expression at the macula densa (MD), and in the present study, it was tested whether nNOS supports renin release by cyclic guanosine monophosphate (cGMP)-mediated inhibition of cyclic adenosine monophosphate (cAMP)-specific phosphodiesterase 3 (PDE3) in juxtaglomerular (JG) cells.

Methods: The experiments were performed in conscious nNOS⁻(/)⁻ and wild types after 10 days on a low-sodium diet by acute treatment with the PDE3-inhibitor milrinone, the PDE5 inhibitor zaprinast, or vehicle, using a crossover study protocol.

View Article and Find Full Text PDF

Background & Aims: Suppression of the hypothalamic-pituitary-adrenal axis occurs in cirrhosis and cholestasis and is associated with increased concentrations of bile acids. We investigated whether this was mediated through bile acids acting to impair steroid clearance by inhibiting glucocorticoid metabolism by 5beta-reductase.

Methods: The effect of bile acids on glucocorticoid metabolism was studied in vitro in hepatic subcellular fractions and hepatoma cells, allowing quantitation of the kinetics and transcript abundance of 5beta-reductase.

View Article and Find Full Text PDF

To examine the role of the calcium/calmodulin-dependent phosphatase calcineurin in regulation of renin release, we assayed exocytosis using whole-cell patch clamp of single juxtaglomerular cells in culture. The calcineurin inhibitor, cyclosporine A (CsA), significantly increased juxtaglomerular cell membrane capacitance, an index of cell surface area and an established measure of exocytosis in single-cell assays. This effect was mimicked by intracellular delivery of a calcineurin inhibitory peptide, the calcium chelator ethylene glycol tetraacetic acid (EGTA), or the calmodulin inhibitor W-13.

View Article and Find Full Text PDF

Several pathophysiological conditions, including nephrotic syndrome, are characterized by increased renal activity of the epithelial Na(+) channel (ENaC). We recently identified plasmin in nephrotic urine as a stimulator of ENaC activity and undertook this study to investigate the mechanism by which plasmin stimulates ENaC activity. Cy3-labeled plasmin was found to bind to the surface of the mouse cortical collecting duct cell line, M-1.

View Article and Find Full Text PDF

The mechanism by which extracellular hypotonicity stimulates release of renin from juxtaglomerular (JG) cells is unknown. We hypothesized that osmotically induced renin release depends on water movement through aquaporin-1 (AQP1) water channels and subsequent prostanoid formation. We recorded membrane capacitance (C(m)) by whole-cell patch clamp in single JG cells as an index of exocytosis.

View Article and Find Full Text PDF

Background: Preeclampsia is a serious pregnancy complication, accompanied by increased maternal and fetal morbidity. Different models have been used to study preeclampsia, but none of these display all the key features of the disease.

Method: We investigated the effects on maternal blood pressure and fetal outcome exerted by the angiogenesis inhibitor Suramin (100 mg/kg i.

View Article and Find Full Text PDF

Adenosine can induce vasodilatation and vasoconstriction of the renal afferent arteriole of the mouse. We determined here its direct effect on efferent arterioles of mouse kidneys. Using isolated-perfused cortical efferent arterioles, we measured changes in luminal diameter in response to adenosine.

View Article and Find Full Text PDF

Objectives: High-salt diet likely elevates blood pressure (BP), thus increasing the risk of cardiovascular events. We hypothesized that a high-salt diet plays a critical role in subjects whose renin-angiotensin systems cannot adjust to variable salt intake, rendering them more susceptible to atherosclerosis.

Methods: Apolipoprotein E-deficient (ApoE-/-) mice received standard or high-salt diet (8%) alone or in combination with fixed angiotensin II (Ang II) infusion (0.

View Article and Find Full Text PDF

Proteinuria and increased renal reabsorption of NaCl characterize the nephrotic syndrome. Here, we show that protein-rich urine from nephrotic rats and from patients with nephrotic syndrome activate the epithelial sodium channel (ENaC) in cultured M-1 mouse collecting duct cells and in Xenopus laevis oocytes heterologously expressing ENaC. The activation depended on urinary serine protease activity.

View Article and Find Full Text PDF

Background: Recent data indicate that aldosterone aggravates cyclosporin A (CsA)-induced nephrotoxicity. We examined whether the mineralocorticoid receptor (MR) blocker eplerenone (EPL) antagonized early deterioration of renal function and blood pressure (BP) increase in CsA-treated rats.

Methods: Male Sprague-Dawley rats received CsA (15 mg/kg/day i.

View Article and Find Full Text PDF

The effect of insulin on blood pressure (BP) is debated, and an involvement of an activated renin-angiotensin aldosterone system (RAAS) has been suggested. We studied the effect of chronic insulin infusion on telemetry BP and assessed sympathetic activity and dependence of the RAAS. Female Sprague-Dawley rats received insulin (2 units/day, INS group, n = 12) or insulin combined with losartan (30 mg.

View Article and Find Full Text PDF

Aims: The present study examined the hypothesis that prostaglandin E2 (PGE2) through activation of prostaglandin E (EP) receptor contributes to endothelium-dependent contractions.

Methods And Results: Western blotting revealed that the protein expression of EP1 receptor was significantly down-regulated in the aorta of the spontaneously hypertensive rat (SHR), but there was no significant difference in the expression of EP2, EP4, and total EP3 receptors between preparations of Wistar Kyoto rats (WKY) and SHR. Isometric tension studies showed that low concentrations of PGE2 caused endothelium-dependent relaxations in WKY but not in aortas of the SHR.

View Article and Find Full Text PDF

Background: Nitric oxide deficiency is involved in the development of hypertension, but the mechanisms are currently unclear. This study was conducted to further elucidate the role of neuronal nitric oxide synthase (nNOS) in blood pressure regulation and renin release in relation to different sodium loads.

Methods: Blood pressure and heart rate were measured telemetrically and assessed during periods of physical activity and inactivity.

View Article and Find Full Text PDF

The aspartyl-protease renin is the key regulator of the renin-angiotensin-aldosterone system, which is critically involved in salt, volume, and blood pressure homeostasis of the body. Renin is mainly produced and released into circulation by the so-called juxtaglomerular epithelioid cells, located in the walls of renal afferent arterioles at the entrance of the glomerular capillary network. It has been known for a long time that renin synthesis and secretion are stimulated by the sympathetic nerves and the prostaglandins and are inhibited in negative feedback loops by angiotensin II, high blood pressure, salt, and volume overload.

View Article and Find Full Text PDF

The present experiments were designed to test the hypothesis that prostaglandin (PG) E(2) causes vasodilatation through activation of endothelial NO synthase (eNOS). Aortic rings from mice with targeted deletion of eNOS and E-prostanoid (EP) receptors were used for contraction studies. Blood pressure changes in response to PGE(2) were measured in conscious mice.

View Article and Find Full Text PDF