Publications by authors named "Ole Hassager"

We present structural relaxation studies of a polystyrene star polymer after cessation of high-rate extensional flow. During the steady-state flow, the scattering pattern shows two sets of independent correlations peaks, reflecting the structure of a polymer confined in a fully oriented three-armed tube. Upon cessation of flow, the relaxation constitutes three distinct regimes.

View Article and Find Full Text PDF

Adding small amounts of ring polymers to a matrix of their linear counterparts is known to increase the zero-shear-rate viscosity because of linear-ring threading. Uniaxial extensional rheology measurements show that, unlike its pure linear and ring constituents, the blend exhibits an overshoot in the stress growth coefficient. By combining these measurements with ex-situ small-angle neutron scattering and nonequilibrium molecular dynamics simulations, this overshoot is shown to be driven by a transient threading-unthreading transition of rings embedded within the linear entanglement network.

View Article and Find Full Text PDF

We show that stretching polystyrene melts at a rate faster than the inverse Rouse time, followed by rapid quenching below the glass transition temperature, results in a material that is flexible and remains so for at least six months. Oriented micro/nanofibers are observed in the flexible samples after the mechanical tests. The fibers are probably related to the highly aligned molecules in melt stretching.

View Article and Find Full Text PDF

We present structural small-angle neutron scattering studies of a three-armed polystyrene star polymer with short deuterated segments at the end of each arm. We show that the form factor of the three-armed star molecules in the relaxed state agrees with that of the random phase approximation of Gaussian chains. Upon exposure to large extensional flow conditions, the star polymers change conformation resulting in a highly stretched structure that mimics a fully extended three-armed tube model.

View Article and Find Full Text PDF

Presence of an ultra high molecular weight (UHMw) fraction in flowing polymer melts is known to facilitate formation of oriented crystalline structures significantly. The UHMw fraction manifests itself as a minor tail in the molar mass distribution and is hardly detectable in the canonical characterization methods. In this study, alternatively, we demonstrate how the nonlinear extensional rheology reveals to be a very sensitive characterization tool for investigating the effect of the UHMw-tail on the structural ordering mechanism.

View Article and Find Full Text PDF

While fracture in brittle solids has been studied for centuries until today, there are few studies on fracture in polymer liquids. Recent developments in experimental techniques, especially the combination of controlled filament stretching rheometry and high speed imaging, have opened new windows into the detailed study of fracture processes for polymer liquids. High speed imaging shows that polymer liquids fracture like solids with initiation and propagation of an edge fracture.

View Article and Find Full Text PDF

We use small-angle neutron scattering (SANS) to study labeled short chains with and without the influence of an entangled and highly stretched surrounding environment of longer chains. We find unequivocal evidence of nematic effects as the blend chains in steady state flow are stretched a factor ∼1.5 more from the presence of the long chain nematic field.

View Article and Find Full Text PDF

Understanding the mechanism of fracture is essential for material and process design. While the initiation of fracture in brittle solids is generally associated with the preexistence of material imperfections, the mechanism for initiation of fracture in viscoelastic fluids, e.g.

View Article and Find Full Text PDF

Ionomers are interesting due to their applications in coatings, adhesives, films and packaging materials. A study of the underlying mechanisms for fracture in ionomers is consequently of both practical as well as theoretical interest. In this study, we employ high speed imaging coupled with uniaxial extensional rheometry to delineate the mechanics leading to the brittle fracture of ionomer melts.

View Article and Find Full Text PDF

Understanding the dynamics of polymeric liquids has great importance in the design and processing of soft materials. While slow flow dynamics is now resolved, fast flow dynamics is still unsolved, especially due to the lack of experimental evidence. We here manipulate a poly(methyl methacrylate) solution into exhibiting the same flow behavior as a polystyrene melt.

View Article and Find Full Text PDF

We compare the linear and nonlinear rheological response of three entangled polystyrene solutions with the same concentration of polymer, but diluted using different solvents. The three solutions have exactly the same physical tube model parameters when normalized to the same time scale. Although the three solutions behave identically in small amplitude oscillatory shear flow, they behave markedly different in large strain extensional flow.

View Article and Find Full Text PDF

We provide conclusive evidence of nonmonotonic mechanical behavior in the extension of long-chain branched polymer melts. While nonmonotonic behavior is known to occur for solids, for the case of polymeric melts, this phenomenon is in direct contrast with current theoretical models. We rule out the possibility of the overshoot being an experimental artifact by confirming the existence of steady flow after a maximum in the ratio of stress to strain rate versus strain under both constant stress and constant strain-rate kinematics.

View Article and Find Full Text PDF

We introduce a new field-flow fractionation (FFF) technique, whereby molecules are separated based on their differential interaction (dielectrophoresis (DEP)) with optical electric fields, i.e. electric fields with frequencies in the visible and near-infrared range.

View Article and Find Full Text PDF

This paper presents a theoretical and computational investigation of convection, diffusion, and adsorption in surface-based biosensors. In particular, we study the transport dynamics in a model geometry of a surface plasmon resonance (SPR) sensor. The work, however, is equally relevant for other microfluidic surface-based biosensors, operating under flow conditions.

View Article and Find Full Text PDF

The 'biomimetic' approach to tissue engineering usually involves the use of a bioreactor mimicking physiological parameters whilst supplying nutrients to the developing tissue. Here we present a new heart valve bioreactor, having as its centrepiece a ventricular assist device (VAD), which exposes the cell-scaffold constructs to a wider array of mechanical forces. The pump of the VAD has two chambers: a blood and a pneumatic chamber, separated by an elastic membrane.

View Article and Find Full Text PDF

We use a Lagrangian finite element method to simulate experiments on continued and interrupted extensions of a highly entangled monodisperse polymer melt. It is demonstrated that delayed sample necking or rupture may be explained in terms of the original Doi-Edwards model augmented by the mechanism of chain stretching alone.

View Article and Find Full Text PDF

A proof of concept study of the feasibility of fully three-dimensional (3D) time-dependent simulation of nano-imprint lithography of polymer melt, where the polymer is treated as a structured liquid, has been presented. Considering the flow physics of the polymer as a structured liquid, we have followed the line initiated by de Gennes, using a Molecular Stress Function model of the Doi and Edwards type. We have used a 3D Lagrangian Galerkin finite element methods implemented on a parallel computer architecture.

View Article and Find Full Text PDF

We present a new framework for the description of macromolecules subject to confining geometries. The two main ingredients are a new computational method and the definition of a new molecular size parameter. The computational method, hereafter referred to the confinement analysis from bulk structures (CABS), allows the computation of equilibrium partition coefficients as a function of confinement size solely based on a single sampling of the configuration space of a macromolecule in bulk.

View Article and Find Full Text PDF