Publications by authors named "Ole A Olsen"

Broadly neutralizing antibodies against highly variable viral pathogens are much sought after to treat or protect against global circulating viruses. Here we probed the neutralizing antibody repertoires of four human immunodeficiency virus (HIV)-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies that neutralize broadly across clades. Many of the new monoclonal antibodies are almost tenfold more potent than the recently described PG9, PG16 and VRC01 broadly neutralizing monoclonal antibodies and 100-fold more potent than the original prototype HIV broadly neutralizing monoclonal antibodies.

View Article and Find Full Text PDF

Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations.

View Article and Find Full Text PDF

Broadly neutralizing antibodies (bNAbs), which develop over time in some HIV-1-infected individuals, define critical epitopes for HIV vaccine design. Using a systematic approach, we have examined neutralization breadth in the sera of about 1800 HIV-1-infected individuals, primarily infected with non-clade B viruses, and have selected donors for monoclonal antibody (mAb) generation. We then used a high-throughput neutralization screen of antibody-containing culture supernatants from about 30,000 activated memory B cells from a clade A-infected African donor to isolate two potent mAbs that target a broadly neutralizing epitope.

View Article and Find Full Text PDF

Passive therapy with neutralizing human monoclonal antibodies (mAbs) could be an effective therapy against severe acute respiratory syndrome coronavirus (SARS-CoV). Utilizing the human immunoglobulin transgenic mouse, XenoMouse, we produced fully human SARS-CoV spike (S) protein specific antibodies. Antibodies were examined for reactivity against a recombinant S1 protein, to which 200 antibodies reacted.

View Article and Find Full Text PDF

Most primates, including humans, are chronically infected with cospecifically evolved, potentially pathogenic CMV. Abs that bind a 10-aa linear epitope (antigenic determinant 2 site 1) within the extracellular domain of human CMV glycoprotein B neutralize viral infectivity. In this study, we show that genes generated by recombinations involving two well-conserved human germline V elements (IGHV3-30 and IGKV3-11), and IGHJ4, encode primary Ig molecules that bind glycoprotein B at this key epitope.

View Article and Find Full Text PDF