Publications by authors named "Oldham Ce"

In plants, the timely degeneration of tapetal cells is essential for providing nutrients and other substances to support pollen development. Rapid alkalinization factors (RALFs) are small, cysteine-rich peptides known to be involved in various aspects of plant development and growth, as well as defense against biotic and abiotic stresses. However, the functions of most of them remain unknown, while no RALF has been reported to involve tapetum degeneration.

View Article and Find Full Text PDF

Chloroplasts are organelles responsible for chlorophyll biosynthesis, photosynthesis, and biosynthesis of many metabolites, which are one of key targets for crop improvement. Elucidating and engineering genes involved in chloroplast development are important approaches for studying chloroplast functions as well as developing new crops. In this study, we report a long-lived albino mutant derived from a popular ornamental plant 'Golden Pothos' which could be used as a model for analyzing the function of genes involved in chloroplast development and generating colorful plants.

View Article and Find Full Text PDF

North Carolina Central University (NCCU) and Duke Cancer Institute implemented an NCI-funded Translational Cancer Disparities Research Partnership to enhance translational cancer research, increase the pool of underrepresented racial and ethnic group (UREG) researchers in the translational and clinical research workforce, and equip UREG trainees with skills to increase diversity in clinical trials. The Cancer Research Education Program (C-REP) provided training for UREG graduate students and postdoctoral fellows at Duke and NCCU. An innovative component of C-REP is the Translational Immersion Experience (TIE), which enabled Scholars to gain knowledge across eight domains of clinical and translational research (clinical trials operations, data monitoring, regulatory affairs, UREG accrual, biobanking, community engagement, community outreach, and high-throughput drug screening).

View Article and Find Full Text PDF

Estimating gross primary production and ecosystem respiration from oxygen data is performed widely in aquatic systems, yet these estimates can be challenged by high advective fluxes of oxygen. In this study, we develop a hybrid framework linking data-driven and process-based modelling to examine the effect of storm events on oxygen budgets in a constructed wetland. After calibration against measured flow and water temperature data over a two-month period with three storm events, the model was successfully validated against high frequency dissolved oxygen (DO) data exhibiting large diurnal fluctuations.

View Article and Find Full Text PDF

Alzheimer's disease [AD] is not only the most common neurodegenerative disease but is also currently incurable. Proprotein convertase subtilisin/kexin-9 [PCSK9] is an indirect regulator of plasma low density lipoprotein [LDL] levels controlling LDL receptor expression at the plasma membrane. PCSK9 also appears to regulate the development of glucose intolerance, insulin resistance, abdominal obesity, inflammation, and hypertension, conditions that have been identified as risk factors for AD.

View Article and Find Full Text PDF

Objectives: Alzheimer's disease (AD) is a neurodegenerative disorder that affects millions of individuals. Moreover, hypothyroidism has been identified as one of the risk factors that may contribute to the development of AD. Here, we investigated whether there was a correlation among expression levels of proteins involved in the formation of AD lesions, neurite outgrowth, and thyroid hormone levels.

View Article and Find Full Text PDF

Submerged macrophytes can have a profound effect on shallow lake ecosystems through their ability to modify the thermal structure and dissolved oxygen levels within the lake. Invasive macrophytes, in particular, can grow rapidly and induce thermal gradients in lakes that may substantially change the ecosystem structure and challenge the survival of aquatic organisms. We performed fine-scale measurements and 3D numerical modeling at high spatiotemporal resolution to assess the effect of the seasonal growth of L.

View Article and Find Full Text PDF

Assessment of water quality evolution in the thousands of existing and future mine pit lakes worldwide requires new numerical tools that integrate geochemical, hydrological, and biological processes. A coupled model was used to test alternative hypothesized controls on water quality in a pit lake over ∼8 years. The evolution of pH, Al, and Fe were closely linked; field observations were reproduced with generic solubility equilibrium controls on Fe(III) and Al and a commonly reported acceleration of the abiotic Fe(II) oxidation rate by 2-3 orders of magnitude.

View Article and Find Full Text PDF

Among different Water Sensitive Urban Design options, constructed wetlands (CWs) are used to protect and restore downstream water quality by attenuating nutrients generated by stormwater runoff. This research compared the nutrient attenuation ability during a diverse population of storm events of two CWs: (a) a hybrid CW with multiple alternating surface flow (SF) and laterite-based subsurface flow (SSF) compartments, and (b) a single stage SF CW. Within-storm variability, nutrient concentrations were assessed at 2 to 3-h intervals at both the main inlet and outlet of each CW.

View Article and Find Full Text PDF

Variegated 'Marble Queen' (Epipremnum aureum) plant has white (VMW) and green (VMG) sectors within the same leaf. The white sector cells containing undifferentiated chloroplasts are viable, but the underlying mechanism for their survival and whether these white cells would use any metabolites as signal molecules to communicate with the nucleus for maintaining their viability remain unclear. We analyzed and compared phytohormone levels with their precursors produced in chloroplasts between VMW and VMG, and further compared their transcriptomes to understand the consequences related to the observed elevated 12-oxo phytodienoic acid (OPDA), which was 9-fold higher in VMW than VMG.

View Article and Find Full Text PDF

Among different Water Sensitive Urban Design (WSUD) options, constructed wetlands (CWs) are widely used to protect and support downstream urban waterways from stormwater nutrients. This analysis assessed the nutrient attenuation ability of a novel CW in Western Australia that combined multiple alternating surface flow (SF) and laterite-based subsurface flow (SSF) compartments within a parkland context to improve the urban landscape and amenity. The CW was designed to maximise nutrient reduction despite experiencing a large range of hydrologic conditions, from low transit time nutrient-rich pulses during the wet periods to prolonged low to zero flow conditions during the dry periods.

View Article and Find Full Text PDF

Extremely acidic and saline groundwater occurs naturally in south-western Australia. Discharge of this water to surface waters has increased following extensive clearing of native vegetation for agriculture and is likely to have negative environmental impacts. The use of passive treatment systems to manage the acidic discharge and its impacts is complicated by the region's semi-arid climate with hot dry summers and resulting periods of no flow.

View Article and Find Full Text PDF

Single-crystal structural characterizations confirm the existence of the unusual 1 : 4 copper(I) halide : unidentate ligand adducts [Cu(CNt-Bu)4]X for X = Cl, Br (two forms), I (the chloride and one form of the bromide being solvated) with crystal packing dominated by stacks of interleaving cations. Cu-C range between 1.941(2) and 1.

View Article and Find Full Text PDF

The covalent attachment of ubiquitin to proteins is an evolutionarily conserved signal for rapid protein degradation. However, additional cellular functions for ubiquitination are now emerging, including regulation of protein trafficking and endocytosis. For example, recent genetic studies suggested a role for ubiquitination in regulating epsin, a modular endocytic adaptor protein that functions in the assembly of clathrin-coated vesicles; however, biochemical evidence for this notion has been lacking.

View Article and Find Full Text PDF

Oxic resuspension occurs regularly in shallow lakes, yet its role as a mechanism for contaminant remobilization remains ill defined. This study investigated contaminant remobilization during sediment resuspension and determined whether changes in contaminant sediment partitioning reflected the mechanisms controlling remobilization. Arsenic-contaminated sediment from a shallow wetland was subjected to simulated resuspension under a range of differing initial pH conditions.

View Article and Find Full Text PDF

Endocytosis is a regulated physiological process by which cell surface proteins are internalized along with extracellular factors such as nutrients, pathogens, peptides, toxins, etc. The process begins with the invagination of small regions of the plasma membrane which ultimately form intracellullar vesicles. These internalized vesicles may shuttle back to the plasma membrane to recycle the membrane components or they may be targeted for degradation.

View Article and Find Full Text PDF