Background: Treatments that generate T cell-mediated immunity to a patient's unique neoantigens are the current holy grail of cancer immunotherapy. In particular, treatments that do not require cumbersome and individualized ex vivo processing or manufacturing processes are especially sought after. Here we report that AGI-134, a glycolipid-like small molecule, can be used for coating tumor cells with the xenoantigen Galα1-3Galβ1-4GlcNAc (α-Gal) in situ leading to opsonization with pre-existing natural anti-α-Gal antibodies (in short anti-Gal), which triggers immune cascades resulting in T cell mediated anti-tumor immunity.
View Article and Find Full Text PDFBackground: A source of error in prenatal screening for trisomies is PCR amplification error associated with guanine-cytosine (GC) content of DNA fragments in maternal plasma. We describe a simple method of allowing for this.
Methods: Data from a Reflex DNA screening programme (67 trisomy 18 and 83 unaffected pregnancies) were used to compare the ratio of chromosome 18 DNA fragment counts to chromosome 8 DNA fragment counts (because chromosome 8 has a similar GC content to chromosome 18) with the percentage of chromosome 18 DNA counts using counts from all autosomes in the denominator, with and without an all autosome correction for the GC content of the DNA fragments.
A problem at the interface of genomic medicine and medical screening is that genetic associations of etiological significance are often interpreted as having predictive significance. Genome-wide association studies (GWAS) have identified many thousands of associations between common DNA variants and hundreds of diseases and benign traits. This knowledge has generated many publications with the understandable expectation that it can be used to derive polygenic risk scores for predicting disease to identify those at sufficiently high risk to benefit from preventive intervention.
View Article and Find Full Text PDFBackground: An estimate of fetal fraction (FF) is needed for DNA-based screening for trisomy 21 and other aneuploidies, but there is no gold standard to validate FF measurement methods. We specify a gold standard and use it to validate a method of measuring FF (SeqFF) in singleton pregnancies.
Methods: The gold standard was a formula derived from 2 elements: () an estimate of the percentage of DNA fragments in maternal plasma from chromosome 21 (%Ch21) in pregnancies without trisomy 21, 18, or 13 (P) and () calculation of %Ch21 with increasing FF in trisomy 21 pregnancies (P).
Prenatal cystic fibrosis (CF) screening is currently based on determining the carrier status of both parents. We propose a new method based only on the analysis of DNA in maternal plasma. The method relies on the quantitative amplification of the CF gene to determine the percentage of DNA fragments in maternal plasma at targeted CF mutation sites that carry a CF mutation.
View Article and Find Full Text PDFPurpose: The purpose of the study was to determine the screening performance of prenatal reflex DNA screening for trisomies 21 (T21), 18 (T18), and 13 (T13) as part of a routine service at five hospitals.
Methods: Women who accepted screening had a first-trimester combined test (pregnancy-associated plasma protein A, free β-human chorionic gonadotropin, nuchal translucency interpreted with maternal age). Those with a risk of having an affected pregnancy ≥1 in 800 were reflexed to a DNA sequencing test using stored plasma from the original blood sample, thereby avoiding the need to recall them.
Objective: To develop a screening test for fetal trisomy 13, 18, and 21 using cell-free DNA from maternal blood with an automated workflow using the Ion Proton sequencing platform.
Methods: An automated next-generation sequencing workflow was developed using the Ion Proton sequencing platform and software developed for straightforward bioinformatic analysis. An algorithm was developed using 239 samples to determine the likelihood of trisomy, using DNA fragment counts and a fetal fraction validity check; the results were compared with those from invasive diagnostic procedures.
Unlabelled: The ever-increasing threat of multi-drug resistant bacterial infections has spurred renewed interest in alternative approaches to classical antibiotic therapy. In contrast to other mammals, humans do not express the galactose-α-1,3-galactosyl-β-1,4-N-acetyl-glucosamine (α-Gal) epitope. As a result of exposure of humans to α-Gal in the environment, a large proportion of circulating antibodies are specific for the trisaccharide.
View Article and Find Full Text PDFPregnancy is a normal physiological condition in which the maternal β-cell mass increases rapidly about two-fold to adapt to new metabolic challenges. We have used a lineage tracing of β-cells to analyse the origin of new β-cells during this rapid expansion in pregnancy. Double transgenic mice bearing a tamoxifen-dependent Cre-recombinase construct under the control of a rat insulin promoter, together with a reporter Z/AP gene, were generated.
View Article and Find Full Text PDFBackground: We developed a cardiac SPECT system (X-ACT) with low dose volume CT transmission-based attenuation correction (AC). Three solid-state detectors are configured to form a triple-head system for emission scans and reconfigured to form a 69-cm field-of-view detector arc for transmission scans. A near mono-energetic transmission line source is produced from the collimated fluorescence x-ray emitted from a lead target when the target is illuminated by a narrow polychromatic x-ray beam from an x-ray tube.
View Article and Find Full Text PDFBackground: In cardiac SPECT perfusion imaging, motion correction of the data is critical to the minimization of motion introduced artifacts in the reconstructed images. Software-based (data-driven) motion correction techniques are the most convenient and economical approaches to fulfill this purpose. However, the accuracy is significantly affected by how the data complexities, such as activity overlap, non-uniform tissue attenuation, and noise are handled.
View Article and Find Full Text PDFObjectives: To assess whether different genomic cell-free DNAs are equally abundant in the plasma of individual donors, and any relationship between DNA methylation and representation in plasma.
Design And Methods: The concentrations of DNA in plasma were determined by real-time PCR.
Results: Different DNA sequences were not equally represented.
Background: Genomic DNA sequences in cell-free plasma are biomarkers of cancer prognosis, where characteristic changes in methylation of tumour suppressor or oncogene DNA regions are indicative of changes in gene activity. Also, cell-free fetal DNA can be distinguished, by its methylation status, from the maternal DNA in the plasma of pregnant women, hence providing DNA biomarkers for the proposed minimally-invasive diagnosis of fetal aneuploidies, including Down's syndrome. However, the production and clearance of cell-free DNA from plasma in relation to its methylation status, are poorly understood processes.
View Article and Find Full Text PDFThe discovery of cell-free fetal (cff) DNA and RNA in the maternal circulation has driven developments in noninvasive prenatal diagnosis (NIPD) for the past decade. Detection of paternally derived alleles in cff DNA is becoming well established. Now much interest is focussing on NIPD of fetal chromosomal abnormalities, such as trisomy 21, which is a considerable challenge because this demands accurate quantitative measurements of the amounts of specific cff DNA or cff RNA sequences in maternal blood samples.
View Article and Find Full Text PDFReprod Biomed Online
August 2007
This report describes the first identification and characterization of three chromosome-21-specific DNA sequences (and reference sequences from other chromosomes) that are differentially methylated between peripheral blood and placental tissue, with the aim of providing epigenetic biomarkers for quantifying cell-free fetal DNA in maternal plasma. To select sequences to be screened for differential methylation, three strategies were adopted: (i) investigating promoters of highly differentially expressed genes; (ii) choosing 'random' promoter regions; and (iii) choosing 'random' non-promoter regions. Over 200 pre-selected DNA sequences were screened using a methylation-specific restriction enzyme assay.
View Article and Find Full Text PDFThe Fcgamma receptors play important roles in the initiation and regulation of many immunological and inflammatory processes, and genetic variants (FCGR) have been associated with numerous autoimmune and infectious diseases. The data in rheumatoid arthritis (RA) are conflicting and we previously demonstrated an association between FCGR3A and RA. In view of the close molecular proximity with FCGR2A, FCGR2B and FCGR3B, additional polymorphisms within these genes and FCGR haplotypes were examined to refine the extent of association with RA.
View Article and Find Full Text PDFFoxH1 (Fast1) was first characterized as the transcriptional partner for Smad proteins. Together with Smad2/4, it forms the activin response factor (ARF) that binds to the Mix.2 promoter in Xenopus embryos.
View Article and Find Full Text PDFWe report the full genomic organization of the human gene for the corticotropin-releasing factor (CRF) receptor type 1 (CRFR1), with complete mapping of exons 1-14. The 5' flanking region (2.4 kb) of the gene encoding for human CRFR1 was isolated, sequenced, and characterized.
View Article and Find Full Text PDFXenopus Nodal-related (Xnr) 5 is one of the earliest expressed components of a network of TGF-beta factors participating in endoderm and mesoderm formation. Zygotic gene expression is not required for induction of Xnr5; rather, expression is dependent on the maternal factors VegT, localised throughout the vegetal pole, and beta-catenin, functional in the future dorsal region of the embryo. Using transient assays with a luciferase reporter in Xenopus embryos, we have defined a minimal promoter, which mimics the response of the endogenous gene to applied factors.
View Article and Find Full Text PDF