Chaperone-mediated autophagy (CMA) is part of the mammalian cellular proteostasis network that ensures protein quality control, maintenance of proteome homeostasis, and proteome changes required for the adaptation to stress. Loss of proteostasis is one of the hallmarks of aging. CMA decreases with age in multiple rodent tissues and human cell types.
View Article and Find Full Text PDFAutophagy is essential for proteostasis, energetic balance, and cell defense and is a key pathway in aging. Identifying associations between autophagy gene expression patterns in skeletal muscle and physical performance outcomes would further our knowledge of mechanisms related with proteostasis and healthy aging. Muscle biopsies were obtained from participants in the Study of Muscle, Mobility, and Aging (SOMMA).
View Article and Find Full Text PDFAutophagy is an essential component of proteostasis and a key pathway in aging. Identifying associations between autophagy gene expression patterns in skeletal muscle and physical performance outcomes would further our knowledge of mechanisms related with proteostasis and healthy aging. Muscle biopsies were obtained from participants in the Study of Muscle, Mobility and Aging (SOMMA).
View Article and Find Full Text PDFAdipogenesis is a tightly orchestrated multistep process wherein preadipocytes differentiate into adipocytes. The most studied aspect of adipogenesis is its transcriptional regulation through timely expression and silencing of a vast number of genes. However, whether turnover of key regulatory proteins per se controls adipogenesis remains largely understudied.
View Article and Find Full Text PDFAutophagy is essential for protein quality control and regulation of the functional proteome. Failure of autophagy pathways with age contributes to loss of proteostasis in aged organisms and accelerates the progression of age-related diseases. In this work, we show that activity of endosomal microautophagy (eMI), a selective type of autophagy occurring in late endosomes, declines with age and identify the sub-proteome affected by this loss of function.
View Article and Find Full Text PDFBackground: The X-chromosome gene USP9X encodes a deubiquitylating enzyme that has been associated with neurodevelopmental disorders primarily in female subjects. USP9X escapes X inactivation, and in female subjects de novo heterozygous copy number loss or truncating mutations cause haploinsufficiency culminating in a recognizable syndrome with intellectual disability and signature brain and congenital abnormalities. In contrast, the involvement of USP9X in male neurodevelopmental disorders remains tentative.
View Article and Find Full Text PDFCRISPR/Cas9-based therapies hold considerable promise for the treatment of genetic diseases. Among these, Hutchinson-Gilford progeria syndrome, caused by a point mutation in the LMNA gene, stands out as a potential candidate. Here, we explore the efficacy of a CRISPR/Cas9-based approach that reverts several alterations in Hutchinson-Gilford progeria syndrome cells and mice by introducing frameshift mutations in the LMNA gene.
View Article and Find Full Text PDFGiant tortoises are among the longest-lived vertebrate animals and, as such, provide an excellent model to study traits like longevity and age-related diseases. However, genomic and molecular evolutionary information on giant tortoises is scarce. Here, we describe a global analysis of the genomes of Lonesome George-the iconic last member of Chelonoidis abingdonii-and the Aldabra giant tortoise (Aldabrachelys gigantea).
View Article and Find Full Text PDFMyeloproliferative neoplasms (MPNs) represent a frequently occurring group of heterogeneous hematologic malignancies. In the last decade, the identification of JAK2-activating mutations in a significant proportion of MPN patients gave rise to the first molecularly driven therapy for BCR-ABL-negative patients. Nevertheless, current efforts are still focused on the identification of novel therapeutic targets to achieve permanent remission.
View Article and Find Full Text PDFAIRAPL (arsenite-inducible RNA-associated protein-like) is an evolutionarily conserved regulator of cellular proteostasis linked to longevity in nematodes, but its biological function in mammals is unknown. We show herein that AIRAPL-deficient mice develop a fully-penetrant myeloproliferative neoplastic process. Proteomic analysis of AIRAPL-deficient mice revealed that this protein exerts its antineoplastic function through the regulation of the insulin/insulin-like growth factor 1 (IGF-1) signaling pathway.
View Article and Find Full Text PDF